在北方酒,我们的低火灾危害(LFH)解决方案符合各种行业标准。我们的专有Casico™化合物是特定设计的,可最大程度地减少热量释放和烟气的产生,同时也确保不会发出腐蚀性气体。此外,它们的密度降低允许缩小尺寸,从而减少了物质使用,这种方法支持环境可持续性而不会损害系统性能。
镁合金具有密度低、强度高、重量轻等特点,是航空和机械工程工业中最先进的结构材料之一,但它们能在 500°C 以上的温度下自燃,并且能持续燃烧,即使在轻微紧急情况下也可能导致灾难性的后果。本文旨在研究可以增强镁合金阻燃性的成分。对商用铸造合金 ML10、LPSO 结构合金、含稀土金属的先进铸造合金以及这些合金中添加不同添加剂(可提高阻燃性的药剂)的变体的燃点进行了比较。已确定,同时含有 LPSO 相和 Yb 或 Ca 添加剂(可将燃点提高到 1000°C 甚至更高的添加剂)的合金可提供最大的阻燃性。
不存在任何适销性或特定用途适用性的默示保证。请参阅 Huber 的标准销售条款,了解适用于 Huber 产品的唯一明示保证。Huber 不对包含 Huber 产品的产品提供保证。Huber 在任何情况下均不对间接损害负责。Hydral® 是 Huber Specialty Hydrates, LLC 在世界各国使用、申请或注册的商标。Hymod® 和 Micral® 是 JM Huber Corporation 在世界各国使用、申请或注册的三水合氧化铝商标。Kemgard® 是 JM Huber Corporation 在世界各国使用、申请或注册的阻燃剂和抑烟剂商标。Martinal® 是 Martinswerk GmbH 在世界各国使用、申请或注册的商标。 Vertex® 是 JM Huber Corporation 在世界各国使用、申请或注册的氢氧化镁商标。Zerogen® 是 JM Huber Corporation 在世界各国使用、申请或注册的矿物阻燃剂商标。©2022 JM Huber Corporation FireRetardantAdditives/WC/RevVII/Oct2022
免责声明:Sabic,其子公司和分支机构(每个卖方)的任何出售都是根据卖方的标准销售条件(可根据要求提供),除非另有书面书面同意并代表卖方签署。虽然本文所包含的信息是真诚提供的,但卖方不对知识产权的机能性和非侵入,包括对这些产品在任何应用中的预期使用或目的的绩效,适用性或适应性或适应性。每个客户必须通过适当的测试和分析来确定卖方材料的适用性。卖方没有关于任何产品,服务或设计的可能使用的陈述,或者应解释为根据任何专利或其他知识产权授予任何许可证。除非另有说明, SABIC和标记为™的品牌是SABIC或其子公司或分支机构的商标。SABIC和标记为™的品牌是SABIC或其子公司或分支机构的商标。
保持可持续性,材料必须丰富,便宜且无毒。毒性并不是唯一的安全问题。由于锂离子电池的易燃性引起的事件经常在媒体中报道。这些设备的易燃性通常与非水电解质有关。电解质也有助于毒性和高成本,部分原因是使用氟化盐。[2-5]解决这些缺陷对于钠离子蝙蝠特别是至关重要的,因为可持续性和安全性至关重要。幸运的是,有一个动力来解决电池中使用的电解质的易燃性质。减轻易燃性的一种常见策略是将有机磷化合物用作电解质溶剂。[6-12]有机磷化合物是多种应用中使用的常见火焰阻燃剂。[13]但是,其中几种化合物对环境和健康有负面影响。[14,15]
锂离子电池 (LIB) 是现代技术不可或缺的一部分,但它们对易燃液体电解质的依赖带来了巨大的安全挑战,尤其是在电动汽车和大型储能系统中。本文介绍了利用定义-测量-分析-设计-优化-验证 (DMADOV) 方法开发阻燃电解质以提高 LIB 的安全性和性能。研究首先定义有机溶剂的性质与电化学稳定性之间的相关性,重点关注可能引起热失控的过度充电风险。通过对候选成分进行系统测量和分析,确定了影响阻燃电解质质量的关键因素。设计阶段优先建立 γ -丁内酯 (γ -BL) 的固体电解质界面 (SEI) 条件,以确保电解质在 LIB 中的性能和稳定性。优化阶段进一步优化了 SEI 形成条件,以解决初始设计期间发现的性能挑战,并结合相关制造工艺。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。研究表明,使用 γ -BL 显著降低了因过度充电引起的爆炸风险。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。值得注意的是,这项研究强调了稳健的 SEI 设计在开发具有高闪点有机溶剂(如 γ -BL)的阻燃电解质中的重要性,并通过专利技术的验证实验提供支持。这些进步不仅提高了 LIB 的安全性,而且还展示了提高电池性能的潜力,为能源存储解决方案的更广泛应用铺平了道路。
Epibond ® 8000 FR B 硬化剂 48 1 将两种组分彻底混合几分钟,直至获得均匀的混合物,或从 2:1 的 200 毫升或 50 毫升双筒胶筒中分配。对于 200 毫升规格,使用 MC 10 毫米直径 x 18 元件螺旋混合喷嘴或同等产品。对于 50 毫升规格,使用 MC 06 毫米直径 x 18 元件螺旋混合喷嘴或同等产品。应用将混合的粘合剂用抹刀涂抹到适当预处理的干燥接合面上。厚度为 0.004 至 0.012 英寸(0.1 至 0.3 毫米)的粘合剂层通常可提供最大的搭接剪切强度。但这种粘合剂设计为在最多 0.12 英寸(3 毫米)的层中有效。涂抹粘合剂后,应立即组装并夹紧要粘合的部件。固化期间整个接头区域的均匀接触压力将确保最佳性能。
可持续,材料必须丰富、廉价且无毒。然而,毒性并不是唯一的安全隐患。媒体经常报道因锂离子电池易燃而发生的事故。这些设备的易燃性通常与非水电解质有关。电解质也导致了毒性和高成本,部分原因是使用了氟化盐。[2–5] 解决这些缺陷对于钠离子电池尤为重要,因为可持续性和安全性至关重要。幸运的是,人们正在努力解决电池中使用的电解质的易燃性。减轻可燃性的一种常用策略是使用有机磷化合物作为电解质溶剂。[6–12] 有机磷化合物是一类常见的阻燃剂,用于各种应用。[13] 然而,其中一些化合物对环境和健康有负面影响。[14,15]