摘要:本文旨在研究补偿硅压力传感器的迟滞误差,以提高传感器精度。研究对象是基于MEMS技术的工业领域中的大量程扩散硅压阻式压力传感器。由于传感器的迟滞特性复杂,补偿困难,目前尚未见相关研究的先例。作者分析了迟滞特性的成因和影响因素,并通过实验证明了硅压力传感器满足广义Preisach模型的必要和充分条件。利用传感器的Preisach模型,采用逆广义Preisach模型的补偿算法对迟滞误差进行补偿,实验表明,补偿后迟滞误差明显减小,从而提高了传感器的精度。
ENDEVCO ® 8500 型扩散压阻式压力传感器是压力传感器系列,与 Endevco 生产高质量仪器的传统一脉相承。除了高质量和高性能之外,这些传感器还具有高度的微型化。该产品系列中最受欢迎的版本之一采用 10-32 UNF 螺纹外壳(直径 5 毫米)。由硅制成的压力传感表面的有效面积直径仅为 0.08 英寸(2 毫米)。性能和耐用性的关键在于独特的传感器设计,该设计结合了扩散到硅芯片中的四臂惠斯通电桥。Endevco 开发了一种特殊形状的硅芯片,而不是简单的平面隔膜,可将应力集中在电阻元件的位置。这可以提高给定共振频率的灵敏度,并大幅提高耐用性。小型传感器内包含桥平衡和温度补偿元件,以优化性能。这是通过使用混合电路制造技术实现的。
自从 20 世纪中叶麦卡洛克-皮茨神经元 1 和感知器 2 模型诞生以来,人工智能 (AI) 或人工神经网络 (ANN) 在很大程度上仍然是一个计算机科学术语。由于计算能力不足,本世纪后期的进展受到阻碍。1980-2000 年期间的集成电路制造无法在单个处理器和内存芯片上高密度集成晶体管。因此,在深度神经网络 (DNN) 或深度卷积神经网络 (DCNN) 3 上运行模拟并存储指数级累积的数据在时间和能源成本方面是不切实际的,尽管当时 ANN 模型已经相对完善 4-10 。随着芯片密度的提升以及对摩尔定律的追求带来的图形处理单元 (GPU) 等多核处理器的出现,再加上更高效的 ANN 算法 3,11,12,计算能力瓶颈在本世纪初得到成功解决。2012 年,具有十亿个连接的 DNN 被证明能够识别猫和人体等高度概念化的物体 13。同年,DNN 被证明在图像分类准确率方面与人类不相上下(基于 MNIST 数据库),甚至在交通标志识别方面也超越了人类 14。脉冲神经网络 (SNN) 由 Maass 于 1995 年提出 15,16,它采用脉冲
Hawkins Cookers Ltd. 成立于 1959 年,是一家专业管理的上市公司。在 2019-20 财年,销售额为 674 千万卢比,增长 3%,税后利润为 72 千万卢比,比上一财年增长 34%。Hawkins 是压力锅市场的领导者,并已成功进军炊具市场。Hawkins 在孟买设有办事处,在塔纳、旁遮普和北方邦设有工厂。Hawkins 以其公平的政策和道德规范而闻名。Hawkins 强调根据结果支付奖励,并完全根据能力进行选拔和晋升。Hawkins 拥有完善的管理培训计划,可在 18 个月内进入管理部门工作。成功完成培训的学员将获得适当的薪资和福利增加。应届毕业生可以申请。具有相关经验的人员可以从更高的起点开始。