(b),6.000 nm(c),8.900 nm(d)和9.300 nm(e),其中颜色表示不同的局部晶体结构:蓝色-BCC,绿色-FCC,RED-HCP和White-Inninnown; (f)在1860 PS和d = 9.300 nm的纳米线内的应变分布,其中原子是通过其局部剪切应变颜色的。
2 亨特输电项目第一阶段是《能源信息法案》下的优先输电基础设施项目 (PTIP),该项目是中西部奥拉纳 REZ 实现 4.5GW 网络传输容量所必需的。如网络基础设施战略中所述,HTP 第一阶段预计将于 2027/2028 年完成,远早于中西部奥拉纳 RNIP 传输容量全面投入使用。
O. 附属住宅单元。本小节旨在为住宅区内附属住宅单元的建立提供法规,并定义此类附属住宅单元的审批流程。本小节旨在为在公共设施和服务充足的地区提供更多经济适用房的机会,并将对直接受影响的住宅区的影响降至最低。市议会的目标是在整个城市内公平分配附属住宅单元。市议会将根据需要审查本小节,以确定该目标是否正在实现。如果发现附属住宅单元的开发过于集中并导致有害影响,市议会可能会审查本小节并根据需要进行修订。
根据《国家历史保护法》第 110(f) 条及其实施条例 (36 CFR § 800.10),联邦机构官员必须“尽最大可能采取必要的规划和行动,尽量减少可能直接受到项目不利影响的国家历史地标的损害。该机构还必须将涉及国家历史地标的任何磋商通知内政部长,并邀请部长参与可能产生不利影响的磋商”(36 CFR § 800.10(c))。根据同一监管规定,历史保护咨询委员会 (ACHP) 可要求部长提交第 213 条报告。第 213 条报告的磋商和准备工作委托给了 NPS。
由于教育和培训会影响就业增长率,因此关注教育水平及其变化如何影响这些增长率非常重要。未来十年,所有工作岗位预计每年增长 0.3%。然而,需要研究生学位的职业预计增长 0.7%。只需要学士学位的职业预计增长 0.4%,而需要 2 年制学位或证书的职业预计每年增长 0.5%。
申请人霍尔家庭信托基金(Hall Family Trust)要求市议会批准开发审查许可证(DRP)和结构开发许可证(SDP),以建造一个新的3,843平方英尺,两层楼的单户住宅,并附上的两车库,并在1128 Solana Drive的空置物业上进行相关的站点改进。8,798平方英尺的地块位于庄园住宅-2(ER-2)区域内,山坡覆盖区(HOZ)和黑暗的天空区域,毗邻环境敏感的栖息地区域(ESHA)。该项目提出的分级约为152立方码的切割和12立方码的填充物,位于结构足迹之外;在结构下方的230立方码切割和3立方码的填充物; 169立方码的挖掘; 260立方码的补救分级;对于826立方码的总级量,有536立方码的出口。提议的住所的最大建筑高度将高于拟议级别(或MSL高264.00英尺)。
中西部奥拉纳 REZ 将成为新南威尔士州政府电力战略和电力基础设施路线图下推出的首个 REZ。新英格兰、西南、亨特-中央海岸和伊拉瓦拉地区也将开发更多 REZ。REZ 将在提供廉价能源方面发挥重要作用,帮助取代未来 15 年内退役的州内现有发电站。它们将开启大量新的大型风能、太阳能和能源存储项目,到 2030 年将支持约 207 亿美元的私人投资。
我很高兴介绍北拉纳克郡的环境战略。我们渴望北拉纳克郡成为生活、学习、工作、投资和旅游的地方,而其中的一个关键方面是确保我们拥有一个允许我们实现这一目标的环境。该战略首次汇集了独立但相关的战略、政策和计划,以确保议会采取统一的环境方法,并继续走包容性增长的道路。在这个充满挑战的时代,议会必须认识到环境在北拉纳克郡生活、工作和旅游的人们日常生活中的重要性。这将包括从我们呼吸的空气到我们如何在该地区旅行以及如何最大限度地利用我们的绿色和开放空间等一切。我们在环境的管理、维护和建设上投入了大量资源,这些资源的投入对于北拉纳克郡的社区实现最佳结果至关重要。
抽象引入了双侧前内侧丘脑核(AMSTN)的深脑刺激(DBS),对患有严重,慢性和治疗难治性强迫症(OCD)患者的一部分有帮助。生物标志物可以帮助患者选择和优化这种侵入性治疗。在这项试验中,我们打算评估与STN和相关生物签名相关的神经认知功能,作为OCD中STN DBS的潜在生物标志物。使用治疗难治性强迫症的方法和分析将经历开放标签的STN DBS。在基线时将进行结构/功能成像,电生理记录和神经认知评估。受试者将接受结构化的临床评估,为期12个月。将招募一组24名健康志愿者和24名患有治疗性强迫症的受试者,他们像往常一样接受治疗,以比较生物标志物和治疗反应。基线生物标志物将被评估为临床反应的预测指标。DIV>神经适应性变化将通过重新评估DBS后神经认知功能,成像和电生理活性进行重新评估。道德和传播该协议已得到美国国家心理健康与神经科学伦理委员会的批准。研究结果将通过同行评审的科学期刊和科学会议来传播。
实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高