摘要:近年来,可穿戴式脑电图 (EEG) 在临床和研究之外的广阔应用前景推动下越来越受欢迎。连续脑电图的普遍应用需要不显眼的外形,以便终端用户轻松接受。在此过程中,可穿戴式脑电图系统已从整个头皮转移到前额,最近又转移到耳朵。本研究的目的是证明新兴的耳部脑电图提供与现有的前额脑电图相似的阻抗和信号特性。在阻抗分析后,使用装有三个定制电极和一个前额电极 (Fpx) 的通用耳机从十名健康受试者获取了睁眼和闭眼阿尔法范式的脑电图数据。入耳式电极阻抗的受试者间变异性在 10 Hz 时为 20 k Ω 至 25 k Ω。信号质量相当,入耳式电极的 SNR 为 6,前额电极的 SNR 为 8。所有入耳式电极在睁眼状态下的 Alpha 衰减都很明显,并且遵循前额电极功率谱密度图的结构,入耳位置 ELE(左耳上)和 ERE(右耳上)与前额位置 Fp1 和 Fp2 之间的 Pearson 相关系数分别为 0.92。结果表明,就阻抗、信号特性和信息内容而言,入耳式 EEG 是已建立的前额 EEG 的非侵入式替代方案。
如今生产的产品并非为维修而设计。这导致产品损坏后被丢弃,并被新产品取代,而不是进行维修。为了解决这个问题,欧盟委员会不断努力更新产品开发的法律和指令,并逐步生效。本论文重点关注便携式电池的生态设计指令和电池指令,旨在重新设计指定的耳机以满足可修复性和最终用户更换电池的要求。这款耳机已由 Sigma Connectivity AB 指定,并从现有的设计中开发出更新的设计以满足生态设计和电池指令的要求。这是通过设计更改来实现的,这些更改允许经济可行的维修和选择最终用户可以自行更换的新电池,以及新电池带来的设计更改。电池是镍氢电池。
此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
美国宇航局的阿尔忒弥斯计划致力于在 2025 年让人类登陆月球,最终目标是在 2030 年代实现载人火星探测任务。其他目标包括每两年进行一次机器人和科学月球表面探测任务、建立一个名为 Gateway 的绕月前哨站,以及在月球上开发一个配备月球车的大本营。实现这些雄心勃勃的目标在技术上具有挑战性,而且成本极其高昂,美国宇航局对阿尔忒弥斯计划的财政投入预计在 2012 财年至 2025 财年期间将达到 930 亿美元。因此,美国宇航局官员表示,与国际航天机构的合作对于实现人类在月球上的强大和可持续存在至关重要,这是人类火星探测任务的先行者。与此同时,过去两年内由23个国家签署的《阿尔忒弥斯协定》表明国际社会对太空探索的广泛兴趣,这些国家寻求建立民用航天机构之间合作的原则以及外层空间利用的管理原则,以提高运营安全性,减少不确定性,并促进其可持续和有益的和平利用。
随着 NASA 规划和实施阿尔忒弥斯计划和其他月球到火星计划,它将为未来几十年的航天事业树立先例。在阿尔忒弥斯计划中纳入伦理和社会考虑因素,将提高我们所创造的未来是人类共同想要生活的未来的可能性。广泛的利益相关者呼吁 NASA 解决伦理和社会问题,其中最显著的例子是美国国家科学院最近的行星科学和天体生物学十年调查,以及美国国家科学技术委员会的地月战略。为了开始响应这些呼吁,NASA 召开了一个研讨会,重点研究两个关键问题:1) NASA 应该如何考虑阿尔忒弥斯和月球到火星计划的伦理、法律和社会影响 (ELSI)?;2) 需要考虑的关键伦理和社会影响是什么?在 NASA 执行一系列日益复杂的阿尔忒弥斯任务时,可以考虑这些问题,这些任务将使人类能够探索月球和火星。
阿尔忒弥斯任务信息图 29 舱外活动和载人地面机动计划 (EHP) 31 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(阿尔忒弥斯航天服) 33 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(国际空间站 (ISS) 航天服) 35 舱外活动和载人地面机动计划 (EHP) – 月球地形车 (LTV) 37 载人着陆系统 (HLS) – 持续月球开发 (SLD) 39 移动发射器 2 (ML2) 41 实施阶段的阿尔忒弥斯主要项目评估 43 门户 45 门户 – 居住和后勤前哨 (HALO) 47 门户 – 动力和推进元件 (PPE) 49 载人着陆系统 (HLS) – 初始能力 51 猎户座多用途机组人员运载火箭(Orion) 53 太阳能电力推进系统(SEP) 55 太空发射系统(SLS)Block 1B 57 挥发物调查极地探测车(VIPER) 59 制定阶段非阿尔忒弥斯重大项目评估 61 蜻蜓计划 63 电动动力系统飞行演示(EPFD) 65 火星样品返回(MSR) 67 实施阶段非阿尔忒弥斯重大项目评估 69
最新的动力和符合微电子制造的进展为健康监测和疾病治疗开辟了机会。其他材料工程的进步,例如导电,皮肤样水凝胶,液体金属,电动纺织品和压电薄膜的开发提供了安全舒适的方式,可以与人体接口。一起,这些进步使具有集成的多模式感应和刺激能力的生物电子设备的设计和工程能够在身体上的任何地方佩戴。在这里特别感兴趣的是,外耳(耳膜)提供了一个独特的机会来设计具有高度可用性和熟悉程度的可扩展生物电子设备,鉴于耳机的广泛使用。本评论文章讨论了能够生理和生物化学感应,认知监测,靶向神经调节以及对人类计算机相互作用的控制的耳朵生物电子设备开发的最新设计和工程进步。从这个可扩展的基础上讲,研究和工程的增长和竞争将增加,以推动耳态生物电子学。这项活动将导致患者和消费者对这些智能耳机式设备的采用增加,以跟踪健康,治疗医疗状况以及增强人类计算机的相互作用。
基于Essenergie AG是德国最大的区域能源服务和基础设施提供商,也是E.On SE的最大子公司。Westenergie Group的分销系统运营商负责大约37,000公里的天然气网络。他们管理的大约196,000公里长的电网将在世界各地延伸几乎五次。在这种基础设施的情况下,Westenergie Group确保了北莱茵 - 韦斯特法利亚,犀牛 - 帕特纳特和萨克森州的数百万户家庭和公司的供应 - 不仅在电力和天然气中,而且还具有水和宽带互联网。与大约10,000名员工和大约1,400个市政伙伴关系,该公司为塑造气候中不良的西方人做出了重要贡献。Westenergie Group包括Westnetz GmbH,Westenergie
我们如何到达月球?美国宇航局强大的 SLS(太空发射系统)火箭将把四名宇航员送上猎户座飞船,从地球飞到月球轨道,飞行距离为 25 万英里。在首次登陆任务阿尔忒弥斯三号上,猎户座飞船将直接与商业着陆系统对接,该系统将把两名宇航员送上月球表面进行探险,然后送回猎户座飞船。对于阿尔忒弥斯四号及以后的任务,猎户座飞船将把机组人员送往门户月球空间站,他们将在那里登上着陆器,并在完成表面探险后返回。门户将成为深空科学的平台和月球表面任务的中转站。当任务的月球部分完成后,机组人员将乘坐猎户座飞船返回地球。早期的阿尔忒弥斯载人任务包括