摘要:耳胶囊和周围的颞骨表现出复杂的3D运动,受骨传导刺激的频率和位置影响。所得的与当经压力的相关性尚未足够理解,因此在实验和数值上都是这项研究的重点。实验是在三个尸体头的六个颞骨上进行的,在0.1-20 kHz的乳突和经典的巴哈位置上应用了bc助听器刺激。在包括海角和stapes在内的各个颅骨区域上测量了三维运动。使用自定义的声学接收器测量了2粒内压力。该实验是基于Liuhead的自定义有限元模型(FEM)的数字重新创建的,并增加了听觉外围。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。 在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。 实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。 未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。 v C 2025作者。 所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。v C 2025作者。所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0034859(2024年8月28日收到; 2024年12月19日修订; 2024年12月20日接受; 2025年1月28日在线发布)[编辑:Julien Meaud]
航天器轨迹设计将飞行器的物理能力与动态环境知识相协调,以到达太空中的首选目的地。识别可用的传输几何形状和硬件规格对于产生可行的解决方案是必不可少的。一个挑战是了解控制飞行器在太空中任何特定区域移动的底层动态结构。扩展多体系统的基本知识有助于构建理想的路线。本研究的目标是表征地球-月球-太阳系统中存在的低能结构的一般行为。其动机与美国宇航局阿尔忒弥斯计划的发展有关,该计划的公共和私营部门现在都对月球任务表现出越来越浓厚的兴趣。1 对于到月球区域的传输时间不受限制的任务,低能量传输提供了推进剂效率高的路径。在地球-月球-太阳系统中,一种低能量传输被称为弹道月球传输 (BLT)。弹道月球转移利用太阳的摄动,在月球轨道之外飞行数月。美国宇航局的地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务于 2022 年 6 月发射,将使用 BLT 在今年晚些时候到达月球附近。2 近期的多个任务也将利用 BLT 到达月球轨道,包括韩国探路者月球轨道器任务 (KPLO)3 和 JAXA 的平衡月地点 6U 航天器 (EQU-ULEUS)。4
无论是对于以月球为中心的阿尔忒弥斯任务还是未来的火星运输任务,减少物流质量、体积和机组人员用于物流管理的时间的技术都非常重要。美国宇航局先进探索系统的物流减少项目正在开发可使各种探索任务受益的技术。物流减少技术包括改进紧凑型厕所以高效收集废物和稳定垃圾压实,这将在消耗品转化为废物时保持卫生的可居住体积。Gateway 和 Artemis 任务都将由定期的载人期和相当长的休眠期组成。火星运输飞行器的组装也包括定期的载人任务阶段和更长时间的无人任务阶段。射频识别 (RFID) 自主跟踪和定位将减轻机组人员的库存管理职责,这在时间紧迫的机组人员期间尤为重要,并确保在访问元素之间转移正确的物品,尤其是那些注定要处理的物品。库存跟踪与机器人操纵货物的能力相结合,可以在机组人员到达之前或离开之后配置探索栖息地,从而可以更好地专注于科学和其他任务目标。机器人货物操纵可扩展到更广泛的栖息地维护应用。本文介绍了正在开发的技术的状态,将它们与探索任务技术差距和增强功能进行了映射,并解释了它们将在何处得到验证。7
太空资源利用已是大势所趋。虽然存在一些法律障碍,但并非不可逾越。《外层空间条约》(OST)第二条禁止占用资源的规定,并不适用于开采的资源,这是第二条的最合理解释,也是几乎所有国家和绝大多数学者的观点。《月球协议》并未成为太空资源利用的障碍,因为该协议尚未被许多国家采用(主要航天国家均未采用)。相比之下,包括美国在内的相当一部分主要航天国家签署的《阿尔忒弥斯协议》对太空资源利用持支持态度。美国、卢森堡、阿联酋和日本四部国家法律都体现了对太空资源利用日益增长的支持。原则上,国内法仅限于颁布法律的国家管辖范围内进行的活动,太空不受任何国家的主权管辖。但是,将国内法应用于太空采矿设施(没有任何正式的主权主张)——这对于实现外层空间的确定性和避免冲突至关重要——符合 OST 的文字和其基本目的。在研究了已颁布的四部太空资源利用法的目的和细节(也考虑到四个国家的法律体系)之后,本文对这四部法律进行了比较,并确定了太空资源利用公司在司法管辖权选择中应考虑的务实因素。本文的结论是,“旗帜选择”应更多地基于对商业环境、支持和政治因素的考虑,而不是四部法律之间的差异。
Artemis 计划包含一系列探索和科学任务。Artemis 不是传统意义上的 NASA“计划”,没有统一的领导和资金。相反,它是跨任务、资金线、理事会和合作伙伴关系的统一目标的广泛表达。Artemis 计划由拥有广泛商业和国际合作伙伴关系的 NASA 牵头,“将在月球上建立可持续的存在,为火星任务做准备”。2 Artemis 计划将包括月球轨道和月球表面的载人作业以及这些区域的无人机器人作业。作为 Artemis 计划的一部分,NASA 牵头的主要计划包括 Gateway、载人着陆系统 (HLS)、猎户座、太空发射系统 (SLS)、商业月球有效载荷服务 (CLPS)、舱外活动 (EVA) 和人类表面机动性 (HSM) 计划以及月球基地。每个计划都涉及商业和国际捐助。国际合作伙伴主导的行动可能包括欧洲大型物流着陆器 (EL3)、加压和非加压探测车、额外的机器人地面任务以及对地面栖息地的贡献。3,4,5,6 NASA 及其合作伙伴还在考虑旨在确保行动可持续性的其他行动,例如现场资源利用 (ISRU) 和支持行动的技术能力,包括电力、通信和着陆基础设施。这些要素共同构成了阿尔忒弥斯计划——这是人类有史以来最雄心勃勃的太空探索计划。
祝贺Jasleen Kaur作为2024年佛罗里达大学/拜耳大学指导计划的2024年成员。 这项由拜耳(Bayer)促进的享有声望的计划是一项全球倡议,旨在促进大学合作伙伴之间的一对一指导关系,旨在培养下一代科学家的才能。 通过该计划,贾斯莱恩将有无价的机会获得软技能和职业发展建议的个性化教练,为他们在科学界的未来成功铺平了道路。 我们为杰斯琳(Jasleen)的成就表示赞赏,并期待目睹她在这个受人尊敬的计划中的持续成长和成就。祝贺Jasleen Kaur作为2024年佛罗里达大学/拜耳大学指导计划的2024年成员。这项由拜耳(Bayer)促进的享有声望的计划是一项全球倡议,旨在促进大学合作伙伴之间的一对一指导关系,旨在培养下一代科学家的才能。通过该计划,贾斯莱恩将有无价的机会获得软技能和职业发展建议的个性化教练,为他们在科学界的未来成功铺平了道路。我们为杰斯琳(Jasleen)的成就表示赞赏,并期待目睹她在这个受人尊敬的计划中的持续成长和成就。
生命支持元件,并在停靠乘员舱时调节热控制。此外,ESM 还可用于携带额外的非加压有效载荷。ESM 依靠独特的四翼太阳能电池阵列,每个机翼由三个独立的面板组成,发射后将展开至 7 米长,从而使航天器的“翼展”达到 19 米。15,000 个太阳能电池产生的能量足以为两个家庭供电。四个阵列中的每一个都围绕两个轴转动,以便能够与太阳对齐以实现最大发电量。ESM 的外部覆盖有凯夫拉纤维,以防止微陨石和空间碎片造成的损坏。此外,航空电子设备等关键冗余系统位于模块的相对两侧。每个 ESM 都由 20,000 多个零件和部件组成,从电气设备到发动机、太阳能电池板、油箱和生命支持用品,包括大约 12 公里长的电缆。任务结束时,欧洲服务模块将在地球大气层中烧毁,而乘员舱将溅落到太平洋。 即将到来的阿尔忒弥斯任务的五个其他服务模块 空客已与欧空局签订合同,建造总共六个欧洲服务模块(ESM-1 至 6),欧空局正在向猎户座计划投资约 20 亿欧元。 第一个模块 ESM-1(命名为“Bremen”)正在等待即将到来的阿尔忒弥斯一号任务的发射。 ESM-1 于 2018 年 11 月交付给 NASA,并与猎户座乘员舱对接。 在俄亥俄州的 NASA 普拉姆布鲁克站设施对完全集成的航天器进行热真空测试后,欧洲于 2020 年 12 月正式将 ESM-1 移交给美国。 回到佛罗里达州的肯尼迪航天中心,它现在已集成在 SLS 火箭上,等待推出到发射台。 2021 年 10 月,第二艘 ESM 通过货机从不来梅飞往肯尼迪航天中心。它将成为 Artemis II 任务的一部分,该任务将搭载首批宇航员绕月飞行并返回地球。ESM-2 将与第二个猎户座乘员舱配对,并再次接受进一步的广泛测试,然后与 SLS 发射器集成——这个过程大约需要两年时间。Artemis II 目前计划于 2024 年发射。2020 年 5 月,ESA 和空客签署了建造第三艘 ESM 的合同。该模块将为 Artemis III 任务提供动力,该任务将见证第一位女性和第一位有色人种踏上月球。该模块的结构已经完成,子系统和设备集成正在空客洁净室中进行。目前预计这项任务最早不会在 2025 年完成。另外三台 ESM 将用于 Artemis IV 至 VI 任务,其中前两台是欧洲对国际门户的贡献,该空间站计划在月球轨道上组装。太空实验室、哥伦布、ATV:载人航天领域的丰富经验 在 ESM 的开发和建设过程中,空客不仅依靠来自欧洲十个国家(比利时、丹麦、法国、德国、意大利、荷兰、
我们的全球伙伴关系延伸到太空,美国和日本正在引领探索太阳系和重返月球的道路。今天,我们欢迎签署《月球表面探索实施协议》,根据该协议,日本计划提供并维持加压月球车的运行,而美国计划在未来的阿尔特弥斯任务中为日本分配两次宇航员登月飞行机会。两国领导人宣布了一个共同目标,即假设实现重要基准,日本国民将成为未来阿尔特弥斯任务中第一位登陆月球的非美国宇航员。
摘要 —本文研究了使用电反射法作为一种无损检测技术来监测并联电池组配置中电池极耳焊接的健康状况。开发了由圆柱形锂离子电池组成的 3D 模型,这些电池通过铜焊接在每个末端通过极耳连接。进行了电流表面分布分析,以了解反射信号的传播并选择最佳设置以提高反射灵敏度。然后,创建了几个严重程度和位置各异的缺陷模型来模拟焊接层中材料的逐渐损失。这项工作证明了基于反射仪的系统能够检测并联电池组配置中的焊接退化,据我们所知,这在文献中从未做过。索引词 —电反射法;锂离子电池极耳焊接;缺陷诊断
