从泰国 Roi Et 省雨养有机稻田土壤样本中分离出一株革兰氏阳性菌,命名为菌株 ORF15-23。据报道,该菌株能产生吲哚-3-乙酸和 2-乙酰基-1-吡咯烷 (2AP) 化合物,溶解钾长石并促进水稻幼苗生长。基因组测序采用 Illumina MiSeq 平台进行。菌株 ORF15-23 的基因组草图长度为 2,562,005 bp,包含 1677 个蛋白质编码序列,平均 G + C 含量为 72.97 mol.%。系统基因组树支持将菌株 ORF15-23 归为微球菌属的成员。平均核苷酸同一性 (ANIb) 值比较显示,菌株 ORF15-23 与 M. yunnanensis DSM 21948 T 基因组的同一性为 96.95 %。M. yunnanesis ORF15-23 的基因组草图序列已存入 DDBJ/EMBL/GenBank 数据库,登录号为 JAZDRZ0 0 0 0 0 0 0 0 0。该基因组序列数据为分类学研究提供了有价值的信息
Bering10k区域海洋建模系统(ROMS)模型是一种高分辨率(10公里)的区域海洋模型,在过去十年中,它在研究和管理环境中都用于研究物理环境与东部白令海货架生态系统之间的关系。以前已经对该模型进行了广泛的验证,尤其是专注于底温度,这是一个关键的物理驱动器,塑造了该区域的生态系统动力学。但是,先前对底温度的观察主要仅限于夏季。最新的弹出式浮球的部署能够越冬测量值,现在使我们可以将先前的验证扩展到其他季节。在这里,我们通过将新的弹出式片段中的数据与几个现有温度数据集相结合,从而在时间尺度上表征了东南白令海架上的底温度。然后,我们使用这种数据组合来系统地评估Bering10K ROM模型捕获这些功能的技能,重点是技能指标的空间变异性以及导致这些模式的潜在过程。我们确认该模型在底部温度井中捕获了整个架子的模式,包括平均模式以及季节性和年际变化。然而,还确定了一些潜在改进的领域:模型中低估的表面混合会导致中间和外部架子上的延迟破坏性,模型中内部前部的位置可能会稍微偏移,而在模型中,估计平滑的平滑性会导致较差的代表性差,可能是在货架上脱落的范围,并通过
摘要。一般来说,煤矿开采都是公开进行的,使用重型设备在表土区取土和搬运土壤,直到可以进行煤矿开采。因此,由于存在物理、化学和生物土壤损害,营养水平较低。生物修复是利用土壤微生物改善前煤矿土地的替代方法之一,这些微生物对土壤植物激素水平有影响,例如产生生长素的根际细菌。本研究旨在分离和表征前煤矿土壤上生长的豆科植物根系的根际细菌,并定性和定量确定其产生 IAA 激素的能力。表征包括革兰氏染色特性、菌落形态、分离物排列和细胞形状。然后,分别使用 Salkowski 方法和分光光度法测试细菌定性和定量产生 IAA 的能力。结果表明,在原煤矿区土壤上生长的豆科植物根际细菌分离株中有 11 种能够产生 IAA 激素,平均浓度为 15.949 ppm(2IA4);10.762 ppm(4IIE3);9.700 ppm(ID3);9.422 ppm(3IB4);7.970 ppm(2IA3);7.847 ppm(6IIB3);7.268 ppm(8IIIB4);6.804 ppm(IIID5);6.459 ppm(IE5);5.379 ppm(7IIIB3);和 5.086 ppm(5IB3)。浓度最高的根际细菌分离株有可能被选为原煤矿区土壤上豆科植物的生长促进剂,以提高豆科作物的生产力。
摘要:枯草芽孢杆菌菌株NCD-2是一种有希望的土壤传播植物疾病的生物防治剂,并且显示出促进某些农作物生长的潜力。这项研究的目的是分析不同作物中NCD-2菌株的定殖能力,并通过根际微生物组分析揭示NCD-2菌株的植物生长促进机制。QRT-PCR用于确定NCD-2菌株的种群,并在应用NCD-2菌株后通过扩增子测序分析微生物群落的结构。结果表明,NCD-2菌株对番茄,茄子和胡椒具有良好的生长促进作用,并且在茄子根际土壤中最丰富。在施用NCD-2菌株后,用于不同作物的有益微生物的类型存在显着差异。PICRUST分析表明,氨基酸传输和代谢,辅酶运输和代谢,脂质转运和代谢,无机离子运输和代谢的相对丰度,以及在Pepper和Eggplant rhizospers a rhizospers of cotter somatiz somaties and somaties and somaties and somaties and somator and somaties and somaties and proplant和applant somation和sopplant somaties prosplant and somation and propplant和代谢机制。总而言之,NCD-2对五个植物的定殖能力不同。 应用NCD-2菌株后,微生物群落在不同植物的根际的结构中存在差异。 根据这项研究中获得的结果,得出的结论是,NCD-2菌株的生长促进能力与其定植量和招募的微生物物种相关。总而言之,NCD-2对五个植物的定殖能力不同。应用NCD-2菌株后,微生物群落在不同植物的根际的结构中存在差异。根据这项研究中获得的结果,得出的结论是,NCD-2菌株的生长促进能力与其定植量和招募的微生物物种相关。
气候因子和根际微生物群的变化导致植物在不利的环境条件下调整其代谢策略以生存。植物代谢产物的变化可以介导农作物的生长和发育,并与植物根际的根际微生物相互作用。了解环境因素,根际菌群和烟草代谢产物之间的相互作用,是通过在中国尤恩南的四个典型代表性烟草种植地点使用综合的元基因组和代谢组策略进行了一项研究。结果表明,农艺和生化特征受到温度,降水(PREP),土壤pH和高度的显着影响。相关分析显示,温度与叶片的长度,宽度和面积有显着的正相关性,而PREP与植物高度和有效的叶子数相关。此外,烘焙叶的总糖和还原的糖含量明显更高,而在现场烟叶中,总氮和总生物碱水平较低,而Prep较低。与其他三个地点相比,在Chuxiong(CX)的不同丰富的代谢物(DMS)中,总共770个代谢产物被检测到,其中二次代谢物在两种叶子和根中都更丰富。共有8479种,属于2,094个属,有420个单独的垃圾箱(包括13个高质量的垃圾箱),它们被检测到851,209个CDSS。微生物的门水平,例如euryarchaeota,粘菌球和脱氧核糖核,在CX部位显着富集,而假胞植物在高温位点富集了良好的prep。相关分析表明,低prep位点样品中的代谢化合物与二氨基丁酸,nissabacter,nissabacter,alloactinosynnema和catellatospora和catellatospora和catellatospora呈正相关,并与niculibibacterium,Noviherbasterium,Noviherbasuspirillim和Limnobrim s himnicibrim and Novibasterium s himnicibrim seriaterts re招募。根际诱导的二氨基丁基菌,尼萨拉克菌,同骨促和catellatospora
中华电信与NTT开展国际APN开创性合作,并在2024年NTT研发论坛上展示成果
现代农业提高农作物资源获取效率的目标取决于根系与土壤之间的复杂关系。根和根际性状在营养和水的有效使用中起着至关重要的作用,尤其是在动态环境下。本综述强调了一种整体观点,挑战了养分和水吸收过程的常规分离以及综合方法的必要性。预期气候变化引起的极端天气事件的可能性增加,导致土壤水分和养分的供应性爆发,探索了根和根际性状的适应性潜力,以减轻压力。我们强调了根和根际特征的重要性,这些特征使农作物能够快速响应不同的资源可用性(即根区域中水和移动营养物质的存在)及其可及性(即将资源传输到根表面的可能性)。这些特征包括根毛,粘液和细胞外聚合物物质(EPS)渗出,Rhizosheath形成以及营养和水转运蛋白的表达。此外,我们认识到平衡碳投资的挑战,尤其是在压力下,优化特征必须考虑碳良好的策略。为了促进我们的理解,审查要求认识到受控环境的局限性精心设计的领域实验。非破坏性方法,例如微型根茎评估和原位稳定的同位素技术,并结合了诸如根部渗出分析的破坏性方法,用于评估根和根际性状。建模,实验和植物育种的整合对于开发能够适应不断发展的资源限制的弹性作物基因型至关重要。
抽象的孟加拉国圣达尔班像其他红树林生态系统一样是全球碳循环中重要的碳储层。土壤呼吸是一种关键的碳通量,与气候变化密切相关。尽管对Sundarbans进行了广泛的研究,但在研究根际土壤碳池(SOC)和呼吸(RS)方面仍然存在差距,这对于了解其在全球气候动态(尤其是当地气候)中的作用至关重要。这项研究调查了孟加拉国圣达尔班红树林(SMF)的寡素,中果石和聚体带的SOC池和RS率。寡聚盐区显示出最高的平均SOC含量(11.26±5.52 t/ha),其次是中乘区(9.91±3.09 t/ha)和聚盐区(9.86±4.16 t/ha)。在中间区域(28.19±5.02 mg co 2 /g土壤)中,RS速率相对较高,其次是聚去盐区(27.81±4.38 mg co 2 /g土壤)和寡聚盐区(27.63±4.16 mg co 2 /g土壤),尽管差异并不重要。进一步分析探索了植物物种对SOC和Rs的影响。虽然不同植物物种的根际土壤表现出不同的SOC值,但RS在不同植物物种之间没有显着差异,并且在RS和SOC值之间未观察到显着关系。红树林被发现在土壤中存储大量有机碳,但与其他热带森林相比,通过土壤呼吸释放了二氧化碳(CO 2)。这种独特的特征强调了红树林在全球气候变化动态中的关键作用。2023)。2023)。2013)。最终的研究提供了有关孟加拉国SMF碳动态的有见地信息,强调了红树林作为碳储层的重要性,具有影响气候变化适应策略的潜力。简介的红树林生态系统充当土地水界面,充当庞大而动态的碳储层,在碳的全球循环中发挥着关键作用,并充当大气Co 2的水槽(Pandey和Pandey 2013,2013年,Zhu和Yan 202222)。孟加拉国的Sundarban红树林(SMF)跨越约6,000平方公里,已被归类为Oligohaline,Mesohaline和Polyhaline生态区,具体取决于盐度(Nazrul-Islam 2003,Ahmed等,Ahmed等,土壤和植被碳固剩含量通过抵消温室气体的影响(GHGS)在缓解气候变化中起关键作用(Janzen 2004,Meliho等人。在全球范围内,土壤持有超过23000亿吨的有机碳,使其成为有机碳的最大陆地储层(Stockmann等另一个估计显示,土壤有机碳(SOC)库存存储在土壤的顶部米中1,500 pgc,超过了大气和陆地植被的组合碳含量(Poulter等人2021)。值得注意的是,所有陆地生态系统中总SOC的70%都集中在森林生态系统中(Jandl等人2007)。 在区域和全球范围内,SOC的可变性与诸如net primary *suoltence的因素有关:。2007)。在区域和全球范围内,SOC的可变性与诸如net primary *suoltence的因素有关:。
Every minute, the world's population grows, and in order to feed them, crop output and agricultural productivity must be improved by adding crucial microorganisms that boost plant yields in various ways through nitrogen fixation, the secretion of both plant growth regulators and 1-aminocyclopropane 1-carboxylate deaminase, as well as some antimicrobial agents.最近已使用许多内生细菌来增加植物的产量,除了减少盐胁迫外,还使用了农业产量。许多科学家已经努力澄清和理解细菌促进植物生长和生产的过程。一种称为1-氨基丙烷-1-羧酸盐(ACC)脱氨酶的重要物质是由几种细菌,植物和真菌产生的,可在不同的环境压力下生长的植物中降低乙烯水平。气态激素乙烯(C 2 H 4)在植物组织中与前体ACC合成,并且在植物中具有许多生化作用,例如细胞分化和组织发育,除水果成熟和形成绿气蛋白和燃料蛋白和挥发性化合物外,除了水果成熟和形成外,除了水果成熟和形成外。因此,这种关键酶在与细菌的正相互作用期间在植物中具有影响力的作用,这些酶因生长素的产生而增加植物生长,并保护植物免受不同的环境压力,例如干旱,高盐,枯萎,高水平的重金属,具有农药的污染物和微生物病原体感染。不同的细菌属是高度ACC脱氨酶产生剂,这些细菌支持植物的生长和农业过程。总而言之,细菌可以替代各种环境良性方法中的化学物质,以提高土壤生育能力和植物生产力。然而,在暗示它们在现场的广泛使用之前,需要进行大量研究以确定这些细菌的功效。