强化农业在增加粮食生产的同时,在养分失衡方面引起了第二代问题,包括每年耗尽土壤养分的挖掘,以耗尽土壤的生育能力,含量和微生物的新出现不足,水桌下降,水的质量及其水的质量,水的含量降低了有机碳的含量,并降低了土壤含量的碳含量。印度土壤不仅表现出主要营养素(氮,磷和钾)的缺乏,还显示出二次营养(硫,钙和镁)和微量营养素(硼,锌,铜和铁等)(农业部,2015年)。基于传统上假定的“高投入,高产量”的概念,高度依赖于化学肥料的投入,但是,作物产量并未增加,而近几十年来,由于肥料的投入的增长,肥料的投入越来越不成比例,导致营养效率低的养分和增加的环境问题,导致肥料的效果越来越多,而越来越多的繁殖范围却忽略了肥料的效果,并且rosive的繁殖率是繁殖力的,并且对繁殖的效果和塑料的影响不断增加。获得土壤养分。 在根际地区的植物根和根际相互作用,在该区域,植物从根部释放出充当化学信号的根。 这涉及营养循环和营养转化。 根际提供了一种潜在的解决方案,可以抵抗这些缺陷并改善土壤生育能力。 植物和根际之间的信号也非常丰富且复杂的微型生物群体多样性,它们既有种间和种内信号传导。基于传统上假定的“高投入,高产量”的概念,高度依赖于化学肥料的投入,但是,作物产量并未增加,而近几十年来,由于肥料的投入的增长,肥料的投入越来越不成比例,导致营养效率低的养分和增加的环境问题,导致肥料的效果越来越多,而越来越多的繁殖范围却忽略了肥料的效果,并且rosive的繁殖率是繁殖力的,并且对繁殖的效果和塑料的影响不断增加。获得土壤养分。在根际地区的植物根和根际相互作用,在该区域,植物从根部释放出充当化学信号的根。这涉及营养循环和营养转化。根际提供了一种潜在的解决方案,可以抵抗这些缺陷并改善土壤生育能力。植物和根际之间的信号也非常丰富且复杂的微型生物群体多样性,它们既有种间和种内信号传导。
致谢本论文工作是无数次合作和会议的结果,因此很难感谢所有人,但我会尽力而为。我首先要感谢 Marie-Laure Desprez-Loustau,她对我的监督同时给了我几乎完全的自由。他的乐观、他的观点以及我们无数次的讨论让我的思想更加成熟,并不断改进我的工作。接下来,我要感谢 Corinne Vacher,感谢她在这三年里给予我的不懈支持。我们几乎每天的互动在各个方面都给我带来了很多。我还要感谢 Cécile Robin,感谢她的及时帮助以及她始终相关且有效的校对。感谢 Aurore Coince、Emmanuel Defossez、Marc Buée、Benoit Marçais、Georges Kunstler 在 BACCARA 项目框架内的合作。非常感谢 Xavier Capdevielle,感谢他在该领域的宝贵帮助以及我们在 Pierrefite 或比利牛斯山脚下进行的不那么严肃的讨论。还要感谢 Olivier Fabreguettes、Martine Martin 和 Gilles Saint-Jean 在真菌学和分子生物学实验室中提供的帮助。感谢 Nicolas Feau、Benoit Barrès、Virgil Fievet 和 Cyril Dutech 在咖啡角或乒乓球桌上进行的各种讨论。最后,感谢我的朋友和家人这三年来的支持。
simba浮标档案馆(data.seaiceportal.de)>> 100个部署/存档的浮标2012 - 2023NH&SH(多数北极;马赛克)漂移,温度和加热温度数据直到最近才一致的厚度数据
在气候模型中模拟稳定水同位素体(即同位素组成不同的分子)的丰度,可以与代理数据进行比较,从而检验有关过去气候的假设并在不同的气候条件下验证气候模型。然而,许多模型在运行时并没有明确模拟水同位素体。我们研究了使用机器学习方法取代基于物理的降水中氧同位素组成的明确模拟的可能性。这些方法针对给定的表面温度和降水量场,估计每个时间步长的同位素组成。我们基于成功的 UNet 架构实现卷积神经网络 (CNN),并测试球形网络架构是否优于将地球经纬度网格视为平面图像的简单方法。我们使用 iHadCM3 气候模型对过去一千年的运行情况进行案例研究,发现同位素组成时间变异的约 40% 可以通过跨年和月度时间尺度的模拟来解释,且模拟质量在空间上存在差异。经测试的 CNN 性能显著优于简单的基线模型,例如随机森林和逐像素线性回归。针对平面图像的标准 UNet 架构的修改版本,其预测结果与球形 CNN 的预测结果相当。不同气候模型中同位素实现方式的差异,可能导致在使用与训练模型不同的气候模型获取的数据进行测试时,模拟结果出现显著下降。未来稳定水同位素模拟的研究方向可能侧重于实现稳健的气候-氧同位素关系,或探索可能的预测变量集。
由不同种类的入侵植物产生的摘要该项目基于与哥伦比亚波哥大的De la Salle合作进行的四年合作,该项目涉及与传统农业和气候变化对土壤的有害影响有关的项目。该研究将使用该组开发的方法生产生物炭并测试其对根际土壤微生物的影响。Biochar是一种由植物材料生产的富含碳产品,具有许多应用,例如水污染物的吸附和碳固存,但主要用于提高土壤生产率。根际是土壤界面的界面,由于分泌的根渗出液,微生物活性很高,它吸引了与植物形成共生关系的微生物。根际中的微生物直接影响农业植物生长和产量的成功。这项工作将检查使用来自不同侵入性植物的叶子作为其原料的叶子补充的根际的微生物活性。叶子的化学成分在不同种类的植物之间有所不同,不同原料产生的生物炭具有不同的特性,这反过来又可能导致居住在根际的微生物差异。该项目将使用已建立的分子和微生物学技术来补充从不同侵入性植物物种产生的生物炭时,根根际的微生物活性是否存在差异,这些char被用来研究根茎中的土壤群落。引言和背景动机以及对研究领域和本科研究领域的更广泛影响最终,确定改善根际中微生物活性的原料类型(用于生物炭生产)可能会导致更好的作物产量。
微生物相互作用对于成功建立和维持微生物人群至关重要。这些相互作用通过环境识别,然后是分子和遗传信息的转移,其中包括许多机制和分子类别。微生物在环境中很少遇到单个物种种群,因为在不同栖息地的研究表明,通常在一个小样本中检测到巨大的丰富性和丰度变化。根际已知是微生物活性的热点。在那里,根际是一个具有较高微生物多样性的环境。根瘤菌作为PGPR可以在促进植物的营养获取中发挥重要作用,这有利于引起根本生物质量积累的因素和/或阻碍那些可能对根系开发产生底特ri心理影响的因素。可以通过间接(对病原体)或直接(例如,植物性生产)的作用方式来实现PGPR的这种作用。细菌菌株之间的植物生长机制不同,在很大程度上取决于这些菌株释放的有机化合物的类型。例如,促进植物生长的激素和其他由Bacte RIA释放的次级代谢产物可以改变植物的生长和发育。最近,据报道,植物和相关细菌之间的关联已经达到这样的水平,因此如果没有其相关细菌,宿主植物就无法发育。
摘要:对三方共生中豆类根际的这项研究的研究重点是共生体之间的关系,而较少的整体根际微生物组。,我们使用了一种实验模型,该模型与AM真菌接种(根瘤菌异常和AM物种混合)的不同花园豌豆基因型来研究它们对土壤微生物主要营养基团的人群水平以及根茎微生物群落中的结构和功能关系的影响。实验是在植物的两个物候周期上进行的。分析:微生物种群密度定义为CUF/G A.D.S.和AMF(%)的根定植率。 我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。 我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。 我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。 微生物群落中营养基团之间保存的比例表明结构和功能稳定性。和AMF(%)的根定植率。我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。微生物群落中营养基团之间保存的比例表明结构和功能稳定性。
在农业的可持续发展中,微生物与植物之间的相互作用显而易见。微生物参与植物系统中的各种代谢活动,进而有助于植物健康的改善。最终,植物 - 微生物相互作用与生物地球化学周期有关。在这种情况下,宏基因组研究有助于我们调查其自然壁ni的微生物多样性,尤其是在根际区域中。明显地,一组种类繁多的细菌,真菌和古细菌可能参与植物生长促进(PGP)活动。根际微生物群落的变化取决于各种参数,例如土壤有机物,植物基因型,植物渗出液,作物旋转,土壤P H,养分循环等。一些非生物因素和化肥对农作物生产力产生负面影响,从而影响了环境的可持续发展。尽管气候变化产生了负面影响,但微生物应对这种改变的情况,并试图通过营养获得和压力耐受性方法成功地调整自己,从而促进植物的生长。因此,气候变化似乎是最近对农业部门的巨大威胁,这在不久的将来可能会持续存在。然而,根际区域中微生物多样性的保护似乎是长期环境可持续性的最有希望的选择之一。
•预计2024年至2028年之间每年的全球平均近表面温度预计将比1850-1900年的平均水平高1.1°C至1.9°C。•可能(80%的机会),在2024年至2028年之间,全球平均平均近表面温度将超过1850-1900的平均水平1.5°C。五年平均值将超过此阈值大约不是(47%)。•2024年至2028年之间至少一年可能比记录中最温暖的一年(目前2023年)要温暖一年。2024年至2028年的五年平均机会比最近五年(2019-2023)高(90%)。•2023-24厄尔尼诺尼诺已经达到顶峰,并且很可能在2024年过渡到LaNiña。•相对于1991 - 2020年期间的平均水平,在接下来的五个延长冬季(11月至3月)的北极变暖预计将大于全球平均温度的变暖大三倍。•相对于1991 - 2020年平均值,预测2024年的降水模式表明,巴西东北部降雨的机会增加增加,而非洲萨赫勒(Sahel)的潮湿条件的机会增加,这与北大西洋地区的较温暖的温度一致。•7月至9月季节的苏达诺 - 撒哈利亚人(Presass)地区可能会看到2024-2028的平均降雨量,尽管个人季节可能并非如此。•2024 - 2028年5月至9月的北大西洋预测条件表明,热带气旋活性高于平均水平。•2024 - 2028年3月的海冰预测表明,巴伦支海,白令海和俄克拉斯大海的海冰浓度进一步降低。