大气和海洋中的翻转环流将能量从热带地区输送到高纬度地区,从而调节地球的气候。过去 40 年来,翻转的年际变化主要由两种耦合的大气-海洋模式决定。第一种与热带辐合带的经向运动有关,第二种与厄尔尼诺现象有关。这两种模式都对热带印度洋-太平洋的海平面变化有很大的影响。跨赤道能量输送的年际变化主要由第一种模式决定,印度洋-太平洋的变化比大西洋或大气中的变化更大。我们的研究结果表明,海洋能量输送在决定热带地区降水模式方面发挥着重要作用,印度洋-太平洋作为气候调节器发挥着关键作用。
摘要:在间隔系统中,谷物和豆类之间的相互作用是由地下结构的互补性及其与土壤微生物组的相互作用强烈驱动的,这会提出一个基本的查询:不同的基因型可以改变根源微生物社区的构型?为了解决这个问题,我们进行了一项现场研究,探测了间作和多样的玉米(Zea Mays L.)和Bean(菜豆射手L.,Chaseolus coccineus L.)基因型组合的影响。通过从根际样品中细菌16S rRNA基因的扩增子测序,我们的结果表明,间编写条件会改变根际细菌群落,但是这种影响的程度基本上受到特定基因型组合的影响。总体而言,间作允许募集独家细菌物种并增强社区的复杂性。尽管如此,玉米和豆类基因型的组合决定了两个不同的群体,这些群体具有较高或较低的细菌群落多样性和复杂性,这些群体受到相关的特定豆系的影响。此外,间作玉米线在募集细菌成员的倾向上表现出不同的倾向,其响应性线更敏感,显示出与特定微生物的优先相互作用。我们的研究最终表明,基因型对根际微生物组有影响,并且针对两种物种的仔细选择基因型组合对于在间隔中实现兼容性优化至关重要。
水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。
*相应的作者:Amir H. Ahkami amir.ahkami@pnnl.gov,odeta qafoku odeta.qafoku@pnnnl.gov。作者的贡献:Amir H. Ahkami:概念化了这项工作,撰写了摘要,简介和第5.1节,用于监测根际中的营养和化学交换的第5.1节,促进了图1,2和7的发展,并审查并编辑了手稿。odeta Qafoku:概念化了工作;撰写介绍和第2节;综合成像和生化方法论,以解决时空中的根际过程;促进了图1,2和7的发展,并审查并编辑了手稿。tamas varga:写下基于图像的植物土壤相互作用的基于图像的建模的第4.1-4.2节:根际多尺度测量和建模;有助于开发图1和7。Tiina Roose:写第4节,基于图像的植物土壤相互作用的建模:根际多尺度测量和建模;有助于开发图7。Pubudu Handakumbura:撰写了第3.2节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Jayde A. Aufrecht:撰写了第3.1节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Arunima Bhattacharjee:审查和编辑第3.2节Yi Lu:撰写了第5.2节,《生物传感器》,用于监测根际中的营养和化学交换的生物传感器;开发图3。Quanbing Mou:撰写了第5.2节,《生物传感器》,用于监测根际中的养分和化学交换;开发图3。Zoe Cardon:写了第6节,对田间根际化学梯度的分布和动力学的测量;开发图4。Yuxin Wu:写了第7节,跨尺度的根际相互作用的检测:复杂系统中的升级挑战;写了《陆地生物圈命运》第8.2节:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图5。Joshua B. Fisher:书面第8节,陆地生物圈的命运:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图6。詹姆斯·J·莫兰(James J.
美国机构 2021 财年义务的捐款和其他资金(美元美元)环境保护署 12,386,846.00 美元美国国家科学院 197,957.79 美元美国国家档案和记录管理局 59,650.00 美元美国国家艺术基金会 76,206.00 美元美国国家科学基金会 9,055,936.00 美元美国国际开发署 6,397,855,799.45 美元美国商品期货交易委员会 59,874.99 美元美国农业部 4,936,958.00 美元美国商务部 68,270.00 美元美国国防部 539,133,000.00 美元美国教育部2,808,768.00 美国能源部 $ 35,351,032.00 美国卫生与公众服务部 $ 222,216,324.00 美国国土安全部 $ 439,249.00 美国内政部 $ 242,177.00 美国司法部 $ 635,000.00 美国劳工部 $ 30,210,000.00 美国国务院 $ 8,544,178,019.29 美国运输部 $ 2,452,797.90 美国财政部 $ 172,627,136.46 美国核管理委员会 $ 1,650,000.00 美国邮政服务 $ 9,211,568.15 美国证券交易委员会 $ 65,000.00 总计 $ 15,985,917,570.03
在整个寿命中,人体和大脑忍受了许多决定老年健康结果的外源性和内源性因素的影响。在渐进脆弱的脆弱性之间跨越了巨大的个体间差异,丧失自主权,从而在很大程度上保留了身体,认知和社会功能。在不同衰老轨迹的基础机制下,可以为未来的策略提供维护健康的身体和大脑的策略。在这里,我们提供了有关当前有关脑部健康终生因素的文献的全面概述。我们介绍了越来越多的证据表明,不健康的消化度,久坐的行为,睡眠病理,心血管危险因素和慢性炎症以累积和渐进的方式产生了有害影响,并且及时有效的干预可以促进健康而痛苦的老化。我们讨论了这些危险因素与由此产生的大脑健康结果之间的主要影响和相互作用,以遵循旨在消除,治疗或抵消风险因素的当前策略的描述。我们得出的结论是,有关可修改风险因素的详细见解可以为个性化的多领域策略提供为大脑健康维持的依据,以增加寿命的背景。
华盛顿特区——美国商务部工业和安全局 (BIS) 今天发布了一项临时最终规则 (IFR),对已与我们的国际伙伴达成广泛技术协议的关键和新兴技术实施管制。这项 IFR 包括与量子计算、半导体制造和其他先进技术有关的管制。今天的行动加强了我们与志同道合国家的国际关系,并确保美国的出口管制跟上快速发展的技术的步伐,这些技术一旦落入不当之手,将对我们的国家安全构成严重威胁。工业和安全局副部长艾伦·埃斯特维兹表示:“今天的行动确保我们的国家出口管制跟上快速发展的技术的步伐,并在我们与国际伙伴协同工作时更加有效。调整我们对量子和其他先进技术的管制,将使我们的对手更难以以威胁我们集体安全的方式开发和部署这些技术。”美国商务部负责出口管理的助理部长 Thea D. Rozman Kendler 表示:“保护我们国家安全的最有效方式是与志同道合的合作伙伴一起制定和协调我们的管控措施。今天的行动表明,我们在制定此类管控措施以实现我们的国家安全目标方面具有灵活性。”她还补充道:“我们不仅通过这项规定采用了新兴技术管控措施,而且还通过对可信赖的合作伙伴实施新的许可例外,增强了我们系统的灵活性。”随着具有军事应用的关键技术不断涌现和发展,对此类技术的流动进行管控的必要性也日益增加,以确保这些物项不被用于违反美国国家安全或外交政策的目的。在今天的 IFR 中,BIS 正在对特定类型的物项实施全球出口管制,包括:
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; 8(4):207-212 www.biochemjournal.com收到:14-02-2024接受:16-03-2024 Aniket Aniket Ambadasrao Patil Patil Ph.D。学者,农学系,P.G.I。,博士P.D.K.V.,Akola,Maharashtra,印度,JP Deshmukh博士,AICRP,I.F.S.R.的AICRP,Dr. P.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc. 学者,农艺学系,博士 P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,JP Deshmukh博士,AICRP,I.F.S.R.的AICRP,Dr.P.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc. 学者,农艺学系,博士 P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc.学者,农艺学系,博士P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,印度马哈拉施特拉邦Akola
摘要:本评论讨论了基因饮食对神经退行性疾病的影响和机制,基于可用的证据。生酮饮食是指高脂,中蛋白和低碳水化合物饮食,导致代谢转向酮症。这篇综述系统地总结了支持这种有效的神经性疾病治疗方法的科学文献,包括对线粒体功能的影响,氧化应激,神经蛋白凋亡,神经炎症,神经炎症和微生物群 - gut-gut-gut-brain-brain轴心。它还强调了生酮饮食对治疗阿尔茨海默氏病,帕金森氏病和运动神经元病的影响的临床证据。最后,它讨论了生酮的常见不良反应。尽管生酮饮食在治疗神经退行性疾病中的完整机制尚待阐明,但其临床疗效吸引了许多新的关注者。酮基因饮食是辅助治疗的良好候选者,但其特定的适用性取决于疾病的类型和程度。
摘要:微生物组在塑造宿主表型中的作用已成为一个关键的研究领域,对生态,进化和宿主健康具有影响。复杂而动态的相互作用涉及植物及其多样化的根际微生物群落受到许多因素的影响,包括但不限于土壤类型,环境和植物基因型。了解这些因素对微生物社区大会的影响是产生特定于植物的宿主特定和强大的好处的关键,但它仍然具有挑战性。在这里,我们对八代拟南芥l和cvi进行了人工生态系统选择实验,以选择与宿主的较高或更低生物量相关的土壤微生物。这导致了由于随机环境变化,植物基因型和生物量选择压力之间复杂的相互作用所塑造的不同微生物群落。在实验的初始阶段,基因型和生物量选择处理具有适中但显着的影响。随着时间的流逝,植物基因型和生物量处理的影响更多,解释了微生物群落组成的约40%。此外,在选择高生物量的选择下,观察到在选择中,观察到在选择中,观察到在选择中,观察到在选择中,观察到了植物生长促进根细菌的基因型特异性关联,labraceae和l er和rhizobiaceae与CVI的基因型相关性。