海报展示 1 49 (PO-01) Igor Varga - 自动颅骨缝合线检测用于小鼠表型分析 51 (PO-02) Michaela Šímová - 揭示小鼠卵黄囊中红细胞和髓系祖细胞的出现 52 (PO-03) Olha Pyko - 揭示 ZNF644 缺失的影响:研究 C2H2 锌指蛋白在小鼠雌性表型中的作用 53 (PO-04) Rodolfo Favero - 开发和鉴定 Netherton 综合征的条件性 Spink5 基因敲除小鼠模型 54 (PO-05) Hirotoshi Shibuya - 使用新型增强微型 CT 开发高通量、高分辨率软组织成像方法 55 (PO-06) Matilde Vale - 开发用于治疗钻石的治疗性外泌体和基因疗法黑粉病 (DBA) 56 (PO-07) Sabina Cerulová - 最初创建的具有罕见 GALNT3 突变的小鼠模型中钙磷酸代谢失调 57 (PO-08) Zhenni Liu - 探索 GPR45 在代谢调节中的作用及其对肥胖和相关疾病的影响 58 (PO-09) Eni Tomovic - 在捷克儿科患者中检测到的 GRIN 变异的遗传和功能分析 59 (PO-10) Ben Davies - Grem1 (88 kb) 和 Taf1 (166kb) 基因的人类基因组人源化 60 (PO-11) Federica Gambini - 用于 SARS-CoV-2 研究的新型可诱导 hACE2 小鼠模型的表征:对急性感染和长期 COVID 的见解 61 (PO-12) Klevinda Fili - 携带神经发育疾病相关变异的小鼠的表征62 (PO-13) Vera Abramova - 敲除 NMDA 受体 grin2Aa 和 grin2Ab 基因的斑马鱼幼虫的特征:基因表达和游泳行为 63 (PO-14) Hana Kolesová - Jagged1 条件性缺失和基于患者的单一变体小鼠模型的形态学和生理学 64 (PO-15) Petr Nickl - AAV 载体在小鼠植入前胚胎中进行多步等位基因转换 65 (PO-16) Silvia Mandillo - 肌肉特异性基因编辑改善了 1 型肌强直性营养不良小鼠模型中的分子和表型缺陷 66 (PO-17) Kristýna Neffeová - 法洛四联症小鼠模型中 Jagged1 缺失的生理和形态学后果 67 (PO-18) Tomasz Kowalczyk - 蛋白质组学PACS2 基因突变小鼠软组织的分析 68 (PO-19) Dominik Cysewski - PACS2 E209K 突变小鼠脑组织的蛋白质组学和代谢组学分析:深入了解分子失调 69 (PO-20) Betul Melike Ogan - FAM83H 在免疫系统稳态中的作用 70 (PO-21) Maximilián Goleňa - C57Bl/6NCrl 小鼠测量参数的季节性 71 (PO-22) Tobiáš Ber,Kateryna Nemesh - 陆生蛞蝓作为研究 RNA 沉默途径的潜在动物模型 72 (PO-23) Gunay Akbarova-Ben-Tzvi - 修饰的 TGF-β β 家族对整合素-ββ1 合成软骨细胞片的影响 73 (PO-24) Arkadiusz Żbikowski - PACS2 综合征对小鼠肺和肾结构的影响 75 (PO-25) Viktor Kostohryz - 附加基因治疗的前景 76 (PO-26) Miles Joseph Raishbrook - Fam84b 在视网膜稳态中的重要性 77 (PO-27) JI XU - 转录辅阻遏物 TLE1 是脂肪细胞分化的积极因素 78 (PO-28) Sylvie Dlugosova - 骨骼畸形和矿化缺陷Fgf20 KO 小鼠 79
摘要 Jacobsen, RM、Davey, M.、Endrestøl, A.、Fossøy, F. 和 Åström, J. 2024. 早期发现新的陆地外来物种。 2023 年昆虫和蛛形纲动物 DNA 条形码结果。NINA 数据报告 1。挪威自然研究所。 https://hdl.handle.net/11250/3165181 自 2018 年起,挪威自然研究所每年对挪威东南部的 25 条路线进行监测,主要目的是检测挪威自然界中早期建立阶段的新外来物种。每个方格中都绘制了陆生维管植物和节肢动物(主要是昆虫,但也有一些蛛形纲动物、少量跳虫和其他节肢动物)。这里只报告了 2023 年节肢动物调查的结果。每个方格都用一个病虫害陷阱收集昆虫和蜘蛛,病虫害陷阱于 5 月设置,9 月拆除,清空 4 次。这样一来,一共得到了 100 个疾病陷阱样本。节肢动物是通过 DNA 条形码来识别的。通过裂解陷阱材料提取 DNA,然后在 PCR 中扩增线粒体基因 COI,然后在 Illumina NovaSeq 平台上进行测序。对得到的序列进行过滤、纠错和质量保证,并生成 ASV(扩增子序列变体)。 ASvene 使用程序 RDP-Classifier 进行分类,它是一个“贝叶斯概率估计器”。该程序使用 NINA 开发的经过训练的数据库,根据参考序列将 ASV 分类为物种。 ASV 和分类的质量有保证,并且对物种分类给出了置信度评估。仅报告物种置信度评估为高或中等的 ASV。然后将该物种名单与挪威外来物种名单、挪威物种名称数据库、GBIF 的全球出现数据和四个欧洲外来物种名单进行核对。然后将物种发现分为以下类别; (1) 挪威物种;出现在物种名称数据库中,但不在挪威外来物种名单中,(2)已知外来物种;出现在物种名称数据库和挪威外来物种名单中,(3)芬诺斯坎迪亚物种;在物种名称数据库中未出现,但已在芬诺斯坎底亚被发现;(4) 可能是新的外来物种;没有出现在物种名称数据库中,也没有在芬诺斯坎迪亚检测到,或者没有在芬诺斯坎迪亚或欧洲被登记为外来物种。在 2023 年野外采集的病虫害陷阱样本中,检测到了 18 种已知外来物种、70 种潜在的新外来物种和 160 种可能未登记的挪威物种(芬诺斯坎迪亚物种)。在已知的外来物种中,有两种生态风险非常高的物种(胡萝卜织布虫和七彩瓢虫),以及两种目前在挪威自然界中没有独立繁殖种群的门把手物种(叶甲虫Deraeocoris flavilinea和寄生蜂Dacnusa sibirica)。在70种潜在新外来物种中,两大优势物种组分别为蝇类(双翅目)38种和黄蜂(膜翅目)21种。对于使用 DNA 宏条形码检测到的潜在新外来物种,应通过在样本中找到检测到该物种的个体并通过形态学鉴定确认物种判定来进行验证。然后,应该对新的外来物种进行风险评估,然后才能评估是否需要采取控制或消灭措施的快速反应。 Rannveig M. Jacobsen (rannveig.Jacobsen@nina.no)、Anders Endrestøl、NINA Oslo、Sognsveien 68、0855 Oslo Marie Davey、Frode Fossøy、Jens Åström、NINA Trondheim、Høgskoleringen 9、7034 Trondheim
生活的来源。细胞的化学组成。从世界加速到细胞世界的通道。通用共享(Luca)。氧光合物。微生物的发现。<2> van Leuwenhoek。显微镜技术人员。。这一代人,弗朗西斯和路易斯·巴斯特。罗伯特·科赫(Robert Koch)。M.W.北京和S. Wingruf。代谢。<2>微生物的营养分类。自身萎缩,杂交,趋化性和光营养。Procasy细胞。forma和细胞的大小。细胞膜:研究,组成和功能。<潜水>细胞。阳性和负克之间的差异。单击拱门。<2> S. S.内部兄弟细胞的兄弟:核苷,包含兵,gassoes,外观海峡:章节和粘液。鞭毛,比尔和比尔。locanism机制。Motity将标志带动。滑动的移动性。趋化和其他税收。调整。Susone;游戏;令人不安的。<2>细胞奶油蛋白酶。世代的青少年。组。微生物生长:总数,有益,动态性。<2>微生物生长结合:Physic Mezi,Carore(Acuplaves),辐射,门膜,化学剂。环境对生长的影响。symptrofits。温度,pH,渗透性,氧气。环境 - 栖息地。<划分主要的陆生栖息地。表面和生物膜。生物之间的相互作用。 法定人数。 共同主义。 地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。生物之间的相互作用。法定人数。共同主义。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。 rizobi和豆类。 微生物和昆虫之间的共生。 隆隆。 <细菌的神圣多样性。 物种的概念。 系统发育树。 蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。 <纪念者的多样性。 <考古学家的神圣特征。 euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。 真核细胞。 真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。 植物细胞。 细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。地衣。rizobi和豆类。微生物和昆虫之间的共生。隆隆。<细菌的神圣多样性。物种的概念。系统发育树。蓝细菌; proteobacteria:Alphaproteoobacteri,beta-专业,gamaprotateobacteri,deltapotateobacteria,epsilonprotateobacteri,zetaptaptateobacteria;肌细菌; Tennericutes;企业;细菌特征;衣原体; plancomycetes; verrucomicrobia; Thermotogae;热硫杆菌; aquificae; Deinococcus-Thermus;酸性杆菌;硝基螺旋体。<纪念者的多样性。<考古学家的神圣特征。euryarcheota; thaumarcheota; Nanoarcheota; Koraecheota; crenarcheota; Lokiarcheota。真核细胞。真核细胞的进化,内共生理论;继发性内膜;真核细胞:核,线粒体,氢化体,叶绿体,内质网,高尔基体,溶酶体,过氧化物酶体,细胞骨骼。植物细胞。细胞分裂成真核生物。 转向多细胞世界的真核微生物的主要群体。细胞分裂成真核生物。转向多细胞世界的真核微生物的主要群体。转向多细胞世界的真核微生物的主要群体。excavata:外载体,帕拉巴西利亚,运动质体,euglenoidaa;肺泡:Ciliati,Dinoflagellata,Apicomplexa; Heteroconti/stramenopili:Diatomee,Oomycota,Golden藻类,棕色藻类;里扎里亚:氯拉拉赫氏菌科,有孔虫,放射性虫; Amoebozoa;蘑菇:Microsportidia,Chytridiomycota,Mucoromycota,Glomeromycota,ascomycota,basidomycota;古细菌;红藻;绿藻。
