Lin、Hong-Ji Lin 和 Chien-Te Chen,“由于自旋极化电荷转移,磁铁矿纳米粒子的碳封装可增强室温下的磁性”,应用物理快报 118,072403 (2021)。 1.1.3 Jiann-Shing Lee*、Yuan-Jhe Song、Hua-Shu Hsu、Chun-Rong Lin、Jing-Ya Huang 和 Jiunn Chen*,“碳包覆磁铁矿纳米粒子的磁性增强”,合金与化合物杂志 790, 716-722 (2019) 1.1.4 Jiunn Chen*、Hua-Shu Hsu、Ya-Huei Huang、Di-Jing Huang,“磁铁矿中自旋相关的光学电荷转移来自透射光磁圆二色性”,物理评论 B 98, 085141 (2018) 1.1.5 Jiunn Chen*、Yi-Shao Lai、Yi-Wun Wang、CR Kao,“Al-Cu 金属间化合物生长行为研究”,微电子可靠性 51, 125-129 (2011),(邀请论文) 1.1.6 HS Hsu*、PY Chung、JH Zhang、SJ Sun、H. Chou、HC Su、CH Lee、J. Chen 和 JCA Huang “Observation of bias-dependent low field positive magneto-resistance in Co-doped amorphous carbon films” Applied Physics Letters 97, 032503 (2010).
人工分子机器,由几个分子组成的纳米级机器,提供了转化涉及催化剂,分子电子,药物和量子材料的场的潜力。这些机器通过将外部刺激(如电信号)转换为分子水平的机械运动来运行。二纯化,一种特殊的鼓形分子,由夹在两个五元碳环之间的铁(Fe)原子组成,是分子机械的有前途的基础分子。它的发现于1973年获得了诺贝尔化学奖,此后已成为分子机器研究的基石。是什么使二新世如此吸引人的是其独特的特性:Fe离子的电子状态从Fe +2到Fe +3的变化,导致其两个碳环在中央分子轴周围旋转约36°。通过外部电信号控制该电子状态可以实现精确控制的分子旋转。然而,实际应用的一个主要障碍是,当吸附到底物表面,尤其是扁平金属底物的表面,即使在超高的真空条件下,也很容易分解。到目前为止,尚未发现一种未发现锚定在没有分解的表面上的确定方法。他们成功地创建了世界上最小的电气控制的分子机。“在这项研究中,我们通过使用二维冠状醚膜预先涂层来成功稳定并吸附的二茂铁分子到贵族金属表面上。重要的是,在在一项开创性的研究中,由日本千叶大学工程研究生院副教授Yamada副教授领导的研究小组,包括千叶大学工程学院的PeterKrüger教授,日本分子科学学院Satoshi Kera教授,日本分子科学研究所,Masaki Horie of Masaki Horie of ther Internation of ther Internation of the National the the Hua the Hua the Hua the hua the hua the hua the hua。这是原子量表上基于二革新的分子运动的第一个直接实验证据。他们的发现发表在2024年11月30日的《小杂志》中。为了稳定二茂铁分子,该团队首先通过添加铵盐来修改它们,形成纤新新世铵盐(FC-AMM)。这种提高的耐用性,并确保可以将分子牢固地固定在基板的表面上。然后将这些新分子固定在由冠状环状分子组成的单层膜上,这些膜被放置在平坦的铜底物上。冠状环分子具有独特的结构,其中央环可以容纳各种原子,分子和离子。Yamada教授解释说:“以前,我们发现冠状环节可以在平坦金属底物上形成单层膜。 该单层将FC-AMM分子的铵离子捕获在冠状醚分子的中央环中,从而防止了二陈代的分解,通过充当对金属底物的屏蔽。”接下来,团队放置了扫描隧道显微镜(STM)探针在FC-AMM分子的顶部,并施加了电压,这引起了分子的横向滑动运动Yamada教授解释说:“以前,我们发现冠状环节可以在平坦金属底物上形成单层膜。该单层将FC-AMM分子的铵离子捕获在冠状醚分子的中央环中,从而防止了二陈代的分解,通过充当对金属底物的屏蔽。”接下来,团队放置了扫描隧道显微镜(STM)探针在FC-AMM分子的顶部,并施加了电压,这引起了分子的横向滑动运动具体而言,在施加-1.3伏的电压时,一个孔(电子留下的空置)进入了Fe离子的电子结构,将其从Fe 2+切换到Fe 3+状态。这触发了碳环的旋转,并伴有分子的横向滑动运动。密度功能理论计算表明,由于带正电荷的FC-AMM离子之间的库仑排斥,这种横向滑动运动发生。
量子模拟在量子化学和物理学中具有广泛的应用。最近,已经提出了随机方法来加速哈密顿模拟。可以通过一种称为QDRIFT的简单算法来证明来自随机化的优势:迭代地进化了哈密顿量中的随机项,并证明平均量子通道近似于理想的演化。今天,我将对QDRIFT产生的随机产品公式进行单一实现。我们的主要结果[ARXIV:2008.11751]证明,随机产品公式的典型实现近似于理想的单一演变,直至小钻石 - 纳蒙德误差。明显地,从任意但固定的输入状态开始的相同随机演变产生的电路适合该输入状态。数值实验验证理论准确性保证。
我是一名材料化学、纳米医学和生物工程研究员,拥有纳米医学、生物医学工程、药物输送、化学、材料科学、纳米技术、免疫学和生物学等多学科背景。我的研究重点包括基础材料(如纳米颗粒、二维材料、水凝胶和 RNA 纳米医学)和生物材料(如工程微藻、微生物和细胞)的创新及其在疾病治疗、疫苗开发和转化医学中的各种应用。这些创新旨在促进将治疗剂有效地输送到病变区域,以治疗各种疾病,包括癌症、动脉粥样硬化和炎症性疾病,同时也探索抗衰老和组织再生中的应用。
研究基金会资助了一项新的国家 RNA 生物学及其应用计划。这项重大基础研究计划将研究 RNA 变体对当地人口生物学和疾病的影响等。与此同时,在促进与匿名健康和其他关键数据集的机密、可信和安全链接方面取得了良好进展。最后,国家研究基金会提供了一条新的资金流,激励和支持我们的 2 个国家专科癌症中心、癌症科学研究所和其他主要临床和研究机构合作伙伴在新加坡转化癌症联盟的保护下更紧密地合作。我们对心血管疾病国家合作企业 (CADENCE) 保护下的 2 个国家心脏专科中心和研究项目也做了同样的事情。13. 这项总体努力正处于令人兴奋的阶段,我们的研究项目
关于艺术家大提琴演奏家伊桑·扬(Ethan Young)是他在巴德学院音乐学院的第四年,在那里他与彼得·威利(Peter Wiley)一起学习大提琴。在进行音乐学院学习之前,他在纽约布鲁克黑文(Brookhaven)与安妮特·佩里·德利哈斯(Annette Perry-Delihas)一起学习了大提琴。除了他的独奏研究外,他的第一个室内音乐经历是2016 - 2019年东区青年四重奏的成员。在参加吟游诗人之前,他参加了2019年的许多音乐节,以及2019年的Nyssma All State Symphony Orchestra,以及2020年和2021年的Nafme全国和所有国家交响乐团。Ethan参加了卡萨特弦乐四重奏的大师班以及Alberto Parrini,Natasha Farny和Tomoko Fujita等大提琴手。与音乐一起,他还将物理学作为他的第二大专业,他正在研究石墨烯纳米技术作为他的高级项目的一部分,并希望2025年12月毕业。。 他是一位狂热的室内音乐家,在他的研究之外,他在长书和探索自然方面都很享受。与音乐一起,他还将物理学作为他的第二大专业,他正在研究石墨烯纳米技术作为他的高级项目的一部分,并希望2025年12月毕业。他是一位狂热的室内音乐家,在他的研究之外,他在长书和探索自然方面都很享受。
本科生(21):Devanshee Sanghvi(2024-,BMB/Chem); Hanna Georgiev(2024-,Chem); Aron Korsunsky (2022-24, ChemE), Anik Dey (2022 summer, Amherst College), Jack Madden (2022-, CS/Pure Math), Ryan Pham (2021-22; Chemistry), Samatha Schultz (2021-22; BMB), Thomas Scudder (2021; BMB), Callie Jillson (2019-20, Chemistry), Minh Ho (2018-19, BMB), Justin Camphell (2017-18; Chemistry/Physics), Katrina Nguyen (2017-18; Chemistry), Samantha Gameros (Summer 2015, Biochemistry), Arianna Vessal (Summer 2014; Virginia Tech), Michael Mohan (2013-2015, Biochemistry), Steven Stimac (Spring 2014, Biochemistry),泰勒·杜贝克(Tyler Dubek)(2010年春季,生物化学),梅利莎·韦尔德曼(Melissa Veldman)(2009; Biochemistry),Miguel Aldrete(2008-09,Bridges /DSP Scholar),Asma al-Rawi(2007-08,Physics)< /div>)