摘要:在量子密钥分布(QKD)中,理论模型和实际系统之间的差距打开了一些安全漏洞,并且可以通过EavesDroppers(EVE)利用它们以获取秘密密钥信息而未被检测到。这是一种有效的量子黑客黑客策略,严重威胁了实际QKD系统的安全性。在本文中,我们提出了对综合硅光子连续可变量子密钥分布(CVQKD)系统的新量子黑客攻击,该量子被称为功率分析攻击。可以通过在机器学习的帮助下分析状态准备中的集成电气控制电路的功率来实施此攻击,在此过程中,人们认为状态准备在初始安全性证明中是完美的。特别是,我们描述了可能的功率模型,并根据支持向量回归(SVR)算法显示完整的攻击。模拟结果表明,秘密密钥信息随着攻击的准确性的提高而降低,尤其是在噪音过多的情况下。尤其是夏娃不必闯入发射机芯片(Alice),并且可能在基于实用的芯片离散可变量子密钥分布(DVQKD)系统中进行类似的攻击。为了抵抗这种攻击,应改进电气控制电路以随机化相应的功率。此外,可以通过使用动态电压和频率缩放(DVFS)技术来降低功率。
无源雷达系统利用外部环境中存在的大量射频发射信号,与传统的有源雷达系统相比具有许多优势。这些优势包括,通过使用这些第三方传输作为目标照明源,可以节省采购和运营成本,从而降低功率要求和隐蔽性。此类系统可用于军事监视以及民用应用,例如空域监视和地面监视。通常,此类系统使用通信、无线电或电视广播服务产生的射频发射。每个发射器在覆盖范围、功率水平和波形方面都有自己的特点。继使用电视传输进行前向散射雷达研究之后,BAE 系统先进技术中心设计并建造了一个用于无源传感器研究的演示系统。演示系统在多倍频程带宽上运行,可以配置为利用来自广播和通信系统的模拟和数字传输。这最大限度地提高了灵活性,并允许通过利用基于特定几何形状、覆盖范围、波形和目标特征的最佳雷达回波来进行监视和跟踪。具体而言,使用不同几何形状在不同波段进行多次观测将允许轨迹融合,从而实现比单波段系统更稳健、更准确的轨迹。本文概述了在演示器开发过程中解决的系统和设计问题,包括模拟模型、目标特征和与不同类型传输相关的权衡。本文展示了实验工作的结果,说明了演示器系统对机会目标的运行情况。
Timothy T. Takahashi 1 亚利桑那州立大学,亚利桑那州坦佩,85287-6106 本文重新考虑使用火箭辅助起飞 (RATO) 系统来设计和认证更安静的商用飞机。由于飞机噪音在很大程度上取决于推进喷气速度,因此在起飞和降落时大幅“降低功率”可以显著降低特定客机对社区噪音的影响。例如,40% 的推力降低有可能进一步将飞机噪音降低多达 9 分贝。我之前的工作重点是探索扩展“油门推力”(ATTCS) 系统的可能性,而这项工作着眼于备用火箭辅助起飞系统的现场性能影响。波音公司早在 1970 年代就为 B727 认证了这种系统,以实现接近最大起飞重量的“热高原”操作。安全合法的调度要求飞机遵守八项主要规定:14 CFR § 25.105、14 CFR § 25.107、14 CFR § 25.109、14 CFR § 25.113、14 CFR § 25.121、14 CFR § 25.149 和 14 CFR § 36.B;它们共同确定了运输类飞机的最低允许起飞跑道要求。14 CFR § 25 附录 E 涵盖了备用火箭辅助系统的操作。这项工作探讨了此类提案在新型认证飞机上将面临的预定现场性能和性能认证问题。
瑞士能源策略2050旨在到2050年将能源供应系统转向净零排放目标,同时确保有效,可再生和安全的能源供应。实现这样一个目标需要通过分散的可再生生成的结合目标大幅增加发电量。在这方面,瑞士议会最近将2035年光伏(PV)生产的目标从11.5增加到35个TWH,每年增长2.2 TWH,与2022年生产的年度6 TWH相比。同时,根据瑞士能源Outlook 2050+的数据,地区和建筑物的供暖/冷却以及私人流动性的脱碳将使电力需求增加约12%。这意味着在地区低压(LV)分销网络中大量部署了分布式PV,因为大规模的PV工厂受到空间需求的限制。最终用户消耗量和分布式PV的结合需要对新资产的大量投资,也需要在基础设施上进行投资。尤其是,LV-Grids中功率流的特性将发生显着变化,可能导致线路上载体并降低功率质量。在这项工作中,我们为可持续的城市能源系统计划提供了一个决策支持框架,考虑了投资成本,运营成本和边界条件的准确建模。我们的框架将来自现场传感器和基础设施的大型数据集集成了针对市政当局和其他政府实体的多目标计划工具中。
与传统的有源雷达系统相比,无源雷达系统利用外部环境中存在的大量射频发射信号,具有许多优势。这些优势包括通过使用第三方传输作为目标照明源,节省采购和运营成本,从而降低功率要求和隐蔽性。此类系统可用于军事监视以及民用应用,例如空域监视和地面监测。通常,此类系统使用通信、无线电或电视广播服务产生的射频发射。每个发射器在覆盖范围、功率水平和波形方面都有自己的特点。继使用电视传输进行前向散射雷达研究之后,BAE 系统先进技术中心设计并建造了一个用于无源传感器研究的演示系统。演示系统在多倍频程带宽上运行,可以配置为利用广播和通信系统的模拟和数字传输。这最大限度地提高了灵活性,并允许通过利用基于特定几何形状、覆盖范围、波形和目标特征的最佳雷达回波进行监视和跟踪。特别是,使用不同几何形状在不同波段进行多次观测将允许轨迹融合,从而实现比单波段系统更稳健、更准确的轨迹。本文概述了在演示器开发过程中解决的系统和设计问题,包括模拟模型、目标特征和与不同类型传输相关的权衡。显示了实验工作的结果,说明了演示系统对机会目标的运行情况。
摘要 - 由于易于获取信息资源,无数网络为生产力带来了许多好处。现在可以通过更少的精力和更少的钱设置网络更快地建立和更改。但是,无线技术也会产生新的威胁。并提醒现有的风险配置文件,以了解信息安全。在无线保真度(Wi-Fi)中,加密算法等安全机制起着至关重要的作用。这些算法消耗了大量的内存和功率。因此,这项研究提出了一种计算有效的安全算法(CESA),该算法可降低功率和内存的高消耗,以有效地保护公共Wi-Fi网络。提出的CESA基于基于哈希的消息身份验证算法。使用安全的哈希算法(SHA)完成了一种数字签名算法(DSA)来生成和验证签名。网络仿真2(NS-2)工具用于评估每种算法的各种设置,包括关键生成时间,加密时间和解密时间。通过模拟,证明了所提出的算法CESA在关键生成时间,加密时间和解密时间方面优于增强的Diffie-Hellman(EDH)和高级加密标准(AES)算法。为了生成钥匙,拟议的CESA算法最多需要59 s,而EDH和AES算法的算法接近90 s。为了加密数据,拟议的CESA算法大约需要98秒,而EDH和AES算法花费了将近167秒。为了解密数据,提议的CESA算法大约花了80秒,而EDH和AES算法花费了近160 s。因此,EDH和AES使CESA对攻击更加强大,并且在处理加密和解密过程方面非常迅速。关键字 - 无线网络,无线保真度,加密算法,计算有效的安全算法,基于哈希的消息身份验证算法,数字签名算法
连续的小型化将硅技术的特征大小降低到纳米尺度,在此尺寸不太尺寸的降低不足以提高性能。使用具有先进特性的新材料已成为必须满足降低功率以提高性能的需求。拓扑绝缘子具有高电导性拓扑保护的边缘状态,对散射不敏感,因此适用于节能的高速设备。在这里,我们通过采用有效的kbh phamiltonian来评估1T'钼二硫化物的狭窄纳米带中的子带结构。高电导性拓扑保护的边缘模式,其能量位于散装带隙内的在与传统电子和孔子带相等的基础上进行了研究。 由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。 与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。 传统电子和孔子带之间的间隙也随垂直电场而增加。 两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。在与传统电子和孔子带相等的基础上进行了研究。由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。传统电子和孔子带之间的间隙也随垂直电场而增加。两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。
摘要 - 与CMOS过程技术缩放,制造纳米级晶体管,触点和互连的掩模成本变得非常昂贵,特别是对于低容量设计。此外,较高的晶体管密度导致了较高的设计复杂性和大型模具,这导致了设计周期时间的增加和过程产量下降。这些挑战迫使小批量应用特异性集成电路(ASIC)朝着高度次优的可编程栅极阵列(FPGAS)朝向高度的。In this arti- cle, we propose a new approach for designing and fabricating high-mix, low-volume heterogeneously integrated ASICs, referred to as Microscale Modular Assembled ASIC (M2A2), consisting of: 1) pick-and-place assembly of prefabricated blocks (PFBs) which utilizes the nano-precision placement capabilities developed in jet-and-flash imprint lithography (J-FIL)和2)EDA设计方法利用无监督的学习和图形匹配技术。EDA方法论利用现有的CAD工具基础架构,以便于当前的EDA生态系统中采用。所提出的制造技术利用采摘和地组装技术允许PFBS的纳米专业组装。PFB可以用高级过程节点制造,然后在晶圆基板上编织在一起。然后可以在PFB编织层的顶部创建/放置定制设计的低成本后端金属层,以实现各种高混合,低量的ASIC设计。M2A2将通过最佳的PFB选择和编织在前端设计中具有更大的功能。在本文中,基于M2A2的设计的性能与不同的设计技术(例如基线ASIC,FPGA和SASIC)相对,在16 nm,40 nm和130 nm CMOS ProudeS节点上。PNR后模拟结果超过15个IWL基准测试表明,所提出的M2A2设计实现了27。11× - 34。89×降低功率 - 否决产物(PDP),并产生1。69× - 2。与基线ASIC相比, 36倍面积。 M2A2设计达到15%–68.5%36倍面积。M2A2设计达到15%–68.5%
6 Assoc.Professor,ECE部,Seshadri Rao Gudlavalleru工程学院,Gudlavalleru -521356,A.P.,印度A.P.,A.P.,India Abstract多路复用器(或MUX)是一个数字电路,它选择了几个模拟或数字输入信号之一,并将选定的输入转发到单个线条中。多路复用器也称为数据选择器。以不同方式实施的多路复用器。绝热逻辑由于热力学过程而消散了较少的能量损失,在这种过程中没有能量交换。绝热逻辑与切换活动的概念一起工作,该概念通过将存储的能量恢复到供应中来降低功率。这些电路是使用可逆逻辑来节省能量的低功率电路。在这三个多路复用器中,使用CMOS逻辑和两种绝热逻辑方法(即有效的电荷恢复逻辑(ECRL)和时钟绝热逻辑(CAL)实现。这些电路是设计,模拟和合成的。结果表明,与ECRL和CMOS逻辑相比,CAL设计消耗的功率更少。引入现代数字系统中功耗的重要性已大大增加。由于电池提供的有限电源,这些设备中涉及的电路必须设计为减少功率。还需要昂贵的噪音冷却机械,电池和电源保护电路。多路复用器是数字设计中必不可少的组成部分。收到二进制信息在数据密集型设计中广泛使用。因此,最小化多路复用器的功率耗散是低功率设计的主要关注点之一。大多数节电技术涉及电源的缩放,这会导致阈值泄漏的大幅度增加,从而在过程变化中引起了不确定的电流。因此,需要其他某些与电压缩放无关的技术。已经发现,计算和功率耗散之间存在基本联系。也就是说,如果可以以某种方式实施计算而没有任何信息损失,那么它所需的能量可能会降低到零。可以通过以可逆的方式执行所有计算来实现。因此,在充电转移阶段的最低功耗称为绝热切换。基于CMOS的常规设计在切换过程中消耗了很多能量。绝热开关技术在充电过程中通过PMOS减少了能量耗散,并重用在放电阶段存储在负载电容器上的某些能量。背景一个多路复用器是具有2N输入线和单个输出线的组合电路。简单地,多路复用器是多输入和单输出组合电路。
创新和原始论文在主题领域中被征求来,包括(但不限于):模拟:具有模拟主导创新的电路;放大器,比较器,振荡器,滤纸,参考;非线性模拟电路;数字辅助模拟电路;传感器接口电路; MEMS传感器/执行器接口,低于10nm缩放技术中的模拟电路。数据转换器:nyquist速率和过采样A/D和D/A转换器;嵌入式和应用特异性A/D和D/A转换器;时间数字转换器;创新和新兴转换器体系结构。数字电路,体系结构和系统*:微处理器,微控制器,应用程序处理器,图形处理器,图形处理器,自动化处理器,机器学习(ML)和ARTIIFICIL(MORIFIFIFICERCENCES(SOCIC)和ARIFIFIFIFIFICENCESS(MOR)和ARIFIFIFIFIFIFICENCESS(MIC)和ARSIECENCES(MONIFICENCESS(a),数字电路,体系结构和系统*:数字电路,架构,构件,构件和完整系统(单片,chiplets,2.5D和3D)用于通信,视频和多媒体,退火,优化问题解决,重新选择系统的数字系统和加速器,接近和子阈值系统以及新兴应用程序。用于芯片内通信,时钟分布,软校园和耐变性设计的数字电路,电源管理(例如电压调节器,适应性数字电路,数字传感器)和数字时钟电路(例如,PLL,PLL,DLL,DLL)用于处理器。数字ML/AI系统和电路,包括新的ML模型,例如变形金刚,图形和尖峰神经网络以及超维计算的新型ML模型,包括近存储器和内存计算以及硬件优化。成像仪,医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车,LIDAR;超声和医学成像;可穿戴,可植入的,可耐用的设备;生物医学传感器和SOC,神经界面和闭环系统;医疗设备;微阵列;身体区域网络和身体耦合沟通;用于医疗和成像应用的机器学习和边缘计算;显示驱动程序,触摸感应;触觉显示; AR/VR的交互式显示和传感技术。内存:独立和嵌入式应用程序的静态,动态和非易失性记忆;内存/SSD控制器;高带宽I/O界面的回忆;基于相变,磁性,自旋转移扭矩,铁电和电阻材料的记忆;阵列体系结构和电路,以改善低压操作,降低功率,可靠性,提高性能和容错性;存储子系统中的应用特异性电路增强,用于AI或其他应用程序的内存计数或接近内存计算宏。电源管理:电源管理,电力传递和控制电路;使用电感,电容和混合技术进行切换模式转换器IC; LDO/线性调节器;门司机;宽带gap(gan/sic);隔离和无线电源转换器;信封供应调节器;能源收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路; LED驱动程序。RF电路和无线系统**:RF,MM-WAVE和THZ频率的完整解决方案和构件,用于接收器,发射机,频率合成器,RF滤波器,收发器,SOCS和无线sips,并结合了多个chiplets。创新电路,系统,设计技术,异质包装解决方案等。用于已建立的无线标准以及未来的系统或新颖的应用,例如传感,雷达和成像,以及那些提高光谱和能量效率的应用程序。安全性:芯片展示加密加速器(例如,加密,轻度加密,Quantum Crypto,Quantum Crypto,隐私保护计算,区块链),智能卡安全性,可信赖/确定计算,确定性计算,安全循环(例如,安全循环,pufs,pufs,trngs,trngs,trngs,trngs offirention offertion offertion攻击),越来越多的攻击性攻击),该攻击性攻击性攻击性,并构成了攻击),该攻击性攻击性,越来越多的攻击),互联网和指示,攻击性,并构成了攻击),该攻击性攻击性,互联网和指标,互联网和指示,攻击性,互联网和指示。对于资源受限的系统,安全的微处理器,安全的记忆,模拟/混合信号电路安全性(例如,安全的ADC/DAC,RF,传感器),安全供应链(例如,硬件Trojan对策,可信赖的微电子电源),具有/核心技术的安全性和核心电路技术的安全性,以供型号/核心循环技术。技术方向:在各个领域的新兴和新颖的IC,系统和设备解决方案,例如集成光子学,硅电子 - 光子学集成;计量,传感,计算等量子设备。;灵活,可拉伸,可折叠,可打印和3D电子系统;细胞和分子靶标的生物医学传感器;无线功率传递距离(例如,RF和MM波,光学,超声波);用于空间应用和其他恶劣环境的IC;非电视计算和机器学习的新颖平台;集成的元物质,替代设备平台中的电路(例如碳,有机,超导体,自旋等)。有线:电线系统的接收器/发射机/收发器,包括背板收发器,铜钟链接,芯片到芯片通信,2.5/3D互连,芯片/包装链接,包装链接,高速接口,用于内存;光学链路和硅光子学;探索性I/O电路,用于提高数据速率,带宽密度,功率效率,均衡,稳健性,适应能力和设计方法;有线收发器的构建块(包括但不限于AGC,模拟前端,ADC/DAC/DSP,TIAS,TIAS,均衡器,时钟生成和分配电路,包括PLL/DLLS,时钟恢复,线驱动程序,驱动器和混合动力车)。