1 硕士技术学者,2 助理教授 1&2 电子与通信工程系,1&2 Shri Ram 工程与管理学院,Banmore Gwalior,印度 摘要:最近,AC-DC 电力电子技术变得越来越高效和具有成本效益,但总有改进的空间。本研究论文涉及 APFC 恒流降压型开关电源中集成自偏置电源的设计和分析。它提出了一种有源功率因数校正 (APFC) 低侧恒流降压型 SMPS IC 中的集成自偏置 VCC 电源,该电源没有外部磁芯和铜线绕组。使用低侧恒流降压转换器的 7W LED 驱动器对设计的电路进行了评估和验证。实验结果表明,基于所提方案的 IC 具有出色的效率、EMI 性能并且功耗更低。所提出的电源电路的应用也可以扩展到其他转换器,例如降压、降压-升压、反激和 Zeta。索引术语 - APFC 低侧 CC 降压转换器、自偏置 VCC、电荷泵单元。
本应用说明用于使用 LinkSwitch-TN2 系列器件设计非隔离电源。本文档描述了使用 LinkSwitch-TN2 系列集成离线开关设计降压和降压-升压转换器的过程。本文档的目的是为电源工程师提供指导方针,使他们能够使用低成本的现成电感器快速构建高效且低成本的降压或降压-升压转换器电源。提供了完整的设计方程式,用于选择转换器的关键组件。由于功率 MOSFET 和控制器集成在单个 IC 中,因此设计过程大大简化,电路配置只有很少的部件,并且不需要变压器。因此,提供了快速入门部分,允许为典型的输出电压和电流选择现成的组件。为了简化任务,本应用说明直接引用了 PI Expert™ 设计软件套件中的 PIXls 设计电子表格。 LinkSwitch-TN2 电源使用的的基本配置如图 1 所示,该配置也可作为本应用说明中描述中使用的组件识别的参考电路。
该充电器采用同步的降压转换器,允许从传统5V USB输入源,HVDCP和USB-PD电源从1S充电到4S电池。它取决于输入到系统输出电压差,以雄鹿,增强或降压模式不间断地运行。当输入电压接近系统输出电压时,转换器以专有降压模式运行。充电器输出电压可在VSYS端子上获得。在没有输入源的情况下,充电器25单击支持USB OTG函数,并且可以在USB C连接器(以及VBUS终端)上生成可调节的2.8V-22V电压,该电压符合USB PD 3.0规格。也支持快速充电,因为BQ25792提供了D+/D-握手,并且符合USB 2.0和USB 3.0 PD。
2.1 主转换器 2.1.1 降压拓扑回顾。降压拓扑是降压转换器中最广泛使用的结构。如图2 所示,开关中断线路电流并向输出 LC 滤波器提供脉冲电压。由于幅度是固定的,因此出现在电容器两端的直流电压取决于施加到滤波器的脉冲宽度。对于这种拓扑,建议采用“连续模式”操作(即电感器电流永不为零),以减少输出电容器和续流二极管的应力。输出电压通常采用 PWM 技术控制。L4985 使用所谓的“电压模式”控制(也称为“直接占空比控制”),其中将固定频率/固定幅度锯齿波与误差信号进行比较,从而设置开关的开启和关闭时间。
摘要 - 电动汽车的关键要求是有效的制动。这项研究的目的是提供利用各种电源调节器的再生制动系统的详细描述。这项研究利用了降压型增强转换器。使用两种方法来修改从再生制动过程中产生的波动输入得出的电压:一种用于减少其,另一种用于增强其。随后,电压传感器检测到所得的输出电压,然后使用Arduino微控制器调节该电压。检查结果表明,降压转换器的性能良好,将输出电压保持在39-40伏的范围内。即使输入电压中有波动,这也可以很好地发挥作用。电压值可用于为36伏电动机的电池充电。这些发现证明了利用降压转换器调节器的功效。此外,它可以在8秒钟内为电池充电,这使其成为电动汽车的可行选择,以替代电池再生制动。
可再生能源是可以无限期使用的能源。因此,太阳能光伏等可再生能源得到了发展。通常用于将微电网连接到电池的传统转换器只能改变电压。要将微电网连接到电池,需要双向转换器。双向转换器有多种配置。控制结构非常复杂,以获得令人满意的输出。本文提出了一种双向 DC-DC 降压-升压转换器,用于控制直流微电网、太阳能系统和负载中的电流。需要双向 DC-DC 降压-升压转换器将电池的能量传输和接收至直流微电网。当电压发送到直流微电网时,电池电压会降低。否则,当电池通过电压充电时,充电电压会增加。这种转换器产生的输出电压比 AC-DC 降压-升压转换器更好,其开关频率是典型转换器的两倍。改进的 DC-DC 转换器具有最简单的形式和最高响应度的优势。
收到日期:2020 年 1 月 15 日。接受日期:2020 年 3 月 15 日。最终版本:2020 年 5 月 25 日摘要本文提出了一种用于串联架构混合储能系统的非线性控制结构,该系统调节直流总线电压(输出电压)并确保电池电流满足电流斜率限制。提出的解决方案分为两个阶段,在第一阶段,电池连接到为辅助电容器供电的降压/升压转换器。在第二阶段,辅助电容器通过第二个降压/升压转换器连接到直流总线。两个转换器均使用级联控制系统进行调节,其中内环是电感器电流的滑模控制器,第一和第二转换器中的外环分别设计用于限制电池电流的斜率和调节直流总线电压。本文提供了控制器的设计过程,并通过电源系统在充电、放电和待机模式下的仿真结果验证了其性能。关键词:电池;电容器;降压/升压转换器;当前转换速率;滑模控制。概述 该文章涉及一系列非线性控制系统的结构,包括直流母线电压(电压)的张力控制和电池充电速度限制的控制科连特。解决方案是连接电池和降压/升压转换器以及辅助电容器。在第二个中,辅助电容器连接到直流总线和第二个转换器降压/升压。转换器使用级联控制系统、内部控制器、电感器模式、外部启动器和第二个转换器,以限制电池和电池的速度。 DC 巴士上的常规张力。本节阐述了控制装置的处理过程和仿真结果的验证,考虑了操作方式、卸载和操作方式中的操作能力系统。
背景:在围手术期,尤其是面部整形手术中,通常使用控制性降压麻醉来减少失血并提供理想的手术视野。目的:评估硝酸甘油和瑞芬太尼在原发性开放式鼻整形术控制性降压麻醉中的降压作用。方法:2021 年 6 月至 10 月在伊拉克埃尔比勒的 Rizgary 教学医院进行了一项前瞻性、比较、随机、双盲研究。80 名患者随机分为两组,分别给予硝酸甘油或瑞芬太尼,以将平均动脉压保持在 50 至 60 mmHg 之间。测量并比较心率、收缩压和舒张压、术中失血量、手术视野质量和手术持续时间。结果:硝酸甘油组和瑞芬太尼组的患者均达到了收缩压、舒张压和平均动脉压目标,结果相似。但瑞芬太尼组和硝酸甘油组手术时间有统计学差异(分别为135.3和145.3分钟)。两组心率有明显差异。瑞芬太尼组术中失血量减少,术野质量更高,外科医生满意度明显更高。结论:硝酸甘油和瑞芬太尼持续输注是一种可靠有效的方法,可通过达到目标平均动脉压来实现控制性降压。瑞芬太尼在限制失血、减少手术时间和维持良好血流动力学(尤其是心率)方面优于硝酸甘油。
您还应尝试使用尽可能少的电压来设计系统;即不要生成系统中未使用的中间总线电压。此规则有一个重要的例外,即最好使用 LDO 来生成低噪声电源电压,例如为混合信号设备供电,例如 ADC、PLL 或其他噪声敏感模拟电路。在这种情况下,使用降压转换器(在某些情况下是升压转换器)作为 LDO 的预调节器可能是明智的。降压或升压转换器的输出略高于 LDO 输出电压加上 LDO 压差电压。这可以最大限度地减少 LDO 中的功耗。