最近,注意力集中在用低毒性和无毒阳离子替换PB上。理想的无铅候选者应具有低毒性,狭窄的直接带隙,高光吸收系数,较高的迁移率,低激子结合能,长载体寿命和稳定性。已经提出了几种可能毒性较小的化学兼容材料,例如SN,BI和GE作为PB的替代品,不仅降低了PB的毒性,还可以保留钙钛矿的独特光电特性。中,SN是一种环保的材料,广泛用于各种有希望的光电设备,例如太阳能电池和FET,因为它满足了电荷平衡,离子大小和协调的先决条件。[8] SN是元素周期表中的14组元素,它的离子半径(115 pm)与PB(119 pm)。像PB一样,SN具有惰性的外轨道,这对于获得金属卤化物钙钛矿的特殊电气和光学特性很重要。与基于PB的钙钛矿相比,基于SN的基于SN的钙钛矿还表现出相似的优质光电子特性,狭窄的带隙约为1.3 eV,高电荷迁移率约为600 cm 2 V -1 S -1,长载体扩散和寿命,以及高吸收系数,高吸收系数约为10 -4 cm -4 cm -1。[15]然而,由于SN在水分和氧气中环境中的稳定性较差,与PB相比,其性能较低。因此,为了环境和人类,需要进行连续而深入的研究以解决在钙钛矿场现场效应晶体管中替换SN时性能差的问题。
累积的水)以毫米(mm)为单位。 因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。 例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即累积的水)以毫米(mm)为单位。因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即每天和每日。建模降水及其聚集体提出了与其他天气变量(例如温度)相比的独特挑战。精确地捕获随着时间或空间的降水的聚集行为对于许多应用至关重要,包括洪水或干旱风险评估。这需要对适当的依赖模型进行典范或隐式规范,以在时空中结合边缘分布,在时间和空间中,不仅极端,而且中度和低降水值都会有助于极端聚集体。特定于降水的另一个方面是其间歇性,这意味着当考虑完整的观察序列时,可以观察到许多零值。这需要将概率分布视为阳性降水的连续成分的混合物,而在没有沉淀的情况下以零为零成分。虽然整个分布对于降水很重要,但它的极端尤其引起了人们的关注,因为它们通过雨水引起的洪水对人们的影响[38],农业[99]和基础设施[85]。对局部极端的研究是极值分析[50,55]的重要早期应用,也是许多方法论发展的催化剂。的确,如果模型未正确指定,则将参数模型用于整个分布可能会导致尾部分位数估计值的显着偏差。因此,使用源自极值理论的模型来估计降水的尾矿[24,8,33]已成为普遍做法。本章回顾了用于研究极端降水的某些关键方面的统计方法,但没有任何声称是详尽的。第1.2节简要概述了典型的数据特征。第1.3节提出了单变量的概率分布,用于在极值和估计其参数的方法中建模可变性。然后,第1.4节演示了这些分布在代表不同持续时间和频率下的预提取强度或返回值时的应用。第1.5节说明了如何在空间上汇总信息以获得更有效的回报率估计值。上述部分中的方法假设极端降水事件是独立的,并且分布相同。但是,有多种原因认为事实并非如此。例如,季节性和空间模式以及气候变化可能引起非组织性。第1.6节回顾了各种检测和建模非组织降水极端的方法。最后一节是一个讨论,介绍了随机发生器的概念,并阐述了为模拟目的建模极端降雨的重要性。
高分辨率降水数据对于现代水文和建筑物湿润性能模型至关重要。在澳大利亚,历史观察结果不足,因为半小时的录音仅取代了2000年代初的许多电台的每日观察。此外,现有的机器学习方法仅限于生成小时时间序列数据。本文使用长期短期记忆将每日降水观察结果分为半小时的时间间隔。该模型利用时间依赖性和小时的天气测量值。我们的结果是基于澳大利亚五个气候区域的站点,表明该模型e FF概述地保留了关键的半小时降水统计数据,包括方差以及半小时湿的半小时的数量和分布。当汇总到每小时间隔时,我们的模型在大多数指标中都优于其他模型。
摘要由于气候变化的效果不断升级,可用的水资源处于风险状态。气候变化估计和预测。降水量和强度的变化对环境体系如何应对人类受影响的气候变化有重大影响,尤其是在阿曼的苏丹国中,这有很长的历史。为了预见2022 - 2050年的降水量,本研究使用社区气候系统模型版本4(CCSM4)与2006 - 2022年阿曼的历史记录记录的降水模式相比,预测未来的气候变化。本研究的目的是确定是否可以使用气候变化情景来预测降水量。这项研究阐明了未来的降水模式,就气候变化对局部降水量的影响而言。此外,这些发现将支持该国的决策者在管理和减轻该国当前的水资源以减少气候变化的影响方面的决策。
1心理学的认知,情感和方法系,维也纳大学,奥地利维也纳大学。2心理学系和瑞士情感科学中心,瑞士日内瓦大学。3纽约大学心理学系,美国纽约,美国。 4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。 5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch3纽约大学心理学系,美国纽约,美国。4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。9认知科学中心,维也纳大学,奥地利维也纳。10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。11当前地址:环境与气候研究中心(ECH),奥地利维也纳。电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch
气溶胶会影响从单个云到地球的量表的降水速率和空间模式。然而,关于在空间和时间尺度上多种效应的基本机制和重要性仍然存在很大的不确定性。在这里,我们回顾了这些效果背后的证据和科学共识,通过修改辐射通量和能量平衡来归类为辐射效应,以及通过修饰云滴和冰晶的修改,将其归类为辐射效应。存在广泛的共识和强有力的理论证据,表明气溶胶辐射效应(气溶胶 - 放射相互作用和气溶胶 - 云相互作用)充当降水变化的驱动因素,因为全球平均降水受到能量和表面蒸发的约束。同样,气溶胶辐射效应会导致大规模降水模式的据可查的偏移,例如间受反应收敛区。气溶胶对较小尺度下降水的影响的程度尚不清楚。尽管存在广泛的共识和有力的证据表明,气溶胶扰动微物理会增加云滴数量并减少液滴大小,从而减慢了降水液滴的形成,但总体气溶胶对跨尺度的降水的总体效应仍然高度不确定。全球云解析模型提供了调查目前在全球气候模型中尚未很好地代表的机制,并与较大的规模连接局部效果。这将增加我们对预测气候变化影响的信心。
在当前气候模型中,全球变暖下的水文周期的预计变化仍然高度不确定。在这里,我们证明了观察性过去的变暖趋势可用于有效地在全球和区域尺度上的平均值和极端降水中有效地占领。这种约束的物理基础依赖于各个模型中相对恒定的气候灵敏度以及模型之间区域水文敏感性的合理一致性,这受大气湿度的增加而支配和调节。对于高排放情况,在全球平均水平上,预计的平均降水量变化从6.9降低至5.2%,而在极端降水中的降水量从24.5降低至18.1%,而间模型方差分别降低了31.0和22.7%。此外,约束可以应用于中间 - 高纬度地区的区域,特别是在土地上。这些约束会导致空间解决的校正,这些校正偏离了全局平均校正。本研究提供了全球范围内受到限制的水文反应,对特定区域的气候适应性有直接影响。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。