抽象的气候变化与一个区域的长期温度和降水模式的逐渐变化有关。在这项研究中,MRI-AGCM3.2S用于模拟当前气候(1981-2005)和预测的不久的将来(2020-2044)和Far Future(2075-2099)。MRI-AGCM3.2S由气象研究所(MRI)和日本气象局(JMA)开发。线性缩放和集体分位数映射方法在MRI-AGCM3.2S的偏置校正中使用了A1b的发射方案(SRE)的特别报告。偏差校正能够在一定程度上改善一般循环模型(GCM)模拟输出。在这项研究中,确定系数(R2)和均方根误差(RMSE)在偏置校正之前和之后进行量化。基于性能,将集总的分位数映射技术鉴定为校正偏差的合适方法。温度和降水的变化预计会因地区和月份而变化。在温度升高和降水变化方面呈现了每个区域未来气候的关键发现。关键词:Ayeyarwady Delta,MRI-AGCM3.2S,SRES-A1B,偏见校正,21 Century。______________________________________________________________________________________________
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
记录季节性温度周期是减轻与未来温暖世界中极端天气事件相关的风险的重要一步。中期温暖时期(MPWP),3.3至3.0 milion,特征是工业前水平高约3°C的全球温度。它代表了定向古气候重建的理想时期,等效于在中等共享的社会经济途径SSP2-4.5下对2100的模型预测。在这里,向北海的化石软体壳进行了季节性团块的同位素分析,以测试上新世模型的比较项目2结果。联合数据和模型证据显示,与冬季相比,MPWP期间( + 2.5°±1.5°C)增强了夏季变暖( + 4.3°±1.0°C),相当于未来气候的SSP2-4.5结果。我们表明,全球变暖的北极扩增会削弱中纬度的夏季循环,同时加强了温度和降水的季节对比度,从而增加了夏季热浪和欧洲未来其他极端天气事件的风险增加。
在此简介中,我们在2005年以来,我们在服装和鞋类生产中心以极高的热量和强烈降水的速度跟踪加速度,以了解气候影响的何处,如何以及如何变化。我们从近二十个中心的高水平变化中观察到,更紧密地看到了我们更高地位的五个生产中心的变化?分析 - Dhaka,Hanoi,Ho Chi Minh City,Karachi和Phnom Penh。首先,我们在第一部分中分析了使用干式和湿圆布测量的热应力风险的变化。在第2节中,我们分析了在过去20年中,热量(尤其是湿鳞球温度(WGBT)和热浪如何)如何在主要服装中心加剧。第3节介绍了过去二十年来洪水的恶化情况,第4节详细介绍了热量和洪水已经如何增强服装工人的生活。第5节讨论了适应的需求,以及准备的主要服装国家在气候变化方面的准备好,第6节在许多这些国家中介绍了治理结构。我们通过推进基于我们在更高基础提出的建议的新建议来得出结论?报告。
•海报1:AI用于气候变化的AI多危险空间 - 周期性的足迹(D. Ferrario,M。Masina,J。Furlanetto,M。Maraschini,M。Maraschini,M.Sanò,M.Sanò,A。Critto E S. Torresan) 15oc世界中的Po Valley上的热浪:驱动因素和影响 - Squintu,A.,McAdam,R.,Perez-Aracil,J.,Alvarez-Castro,C.,Scoccimarro,E。E.•海报4:扩展Era5-Downgan的应用到U.S. Geographical Manco I.,Riviera W.,Zanarta W.,Zantria A.•海报5:使用K均值算法确定极端每日降水的经常性模式:揭示因意大利半岛的气候变化而驱动的空间转移,Manco I.,Feitosa O. M.,Raffa M.,Raffa M.,Raffa M.,Schiano P.,Schiano P.,Rianna G.,Rianna G.,Mercogliano P.•Mercogliano P.使用K-Means,Duminuco P,Manco I.,Rianna g。,。F.,Mercogliano P.•海报7:Koopman的高级SST预测理论,P.L.-Sanchez,M.Newman,J.
图1-1:基于分布的偏置校正方法的示例。8图2-1:使用乘法性分位数映射的偏见和原始访问-CM2校正和原始访问CM2的CCS数据。14图2-2:比较了9个指数的几种方法学变异的性能的热图。16图3-1:VCSN的Tasmin的年度气候,偏置校正CCAM输出,Loyo CV和RAW CCAM输出以及VCSN的偏置。17图3-2:VCSN累积降水的年度气候,偏见校正了访问-CM2 - CCAM输出,Loyo CV和Raw Access-CM2-CCAM输出以及VCSN的偏见。18图3-3:tasmax的VCSN的冬季气候,偏见校正了ec-earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。19图3-4:偏置校正的GFDL-ESM4 - CCAM输出的NZ 12个位置的长期月度平均累积降水量。20图3-5:VCSN的TXX年度气候,偏置校正Ec-Earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。21图3-6:VCSN一天的最高强度降雨的年度气候,偏见校正了EC-EARTH3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。22图3-7:Perkins技能分数比较了湿法长度与VCSN的直方图与VCSN的偏置校正Ec-Earth3-CCAM输出,相应的交叉验证的校正后的输出和原始输出。23图3-8:夏季和冬季的历史和SSP3-7.0实验之间的气候变化信号在这些季节内积累的降水量。3924图3-9:历史和SSP3-7.0实验和CCS的霜冻天数量。25图3-10:偏置校正的访问-CM2输出与历史和SSP3-7.0实验中每日累积降水的相应原始模型输出之间的时间相关性。26图A-1:线性间隔节点,对数间隔节点和Sigmoid间隔节点的分位间距。33图A-2:从分布中绘制的虚拟数据,参考和模拟数据具有相同的平均值和高方差。35图A-3:虚拟数据,参考和模拟数据从平均值和较高方差的分布中绘制。36图A-4:与分组器的乘法降水虚拟数据的每月平均值。37图A-5:在SSP370场景下,访问CM2-CCAM的夏季和冬季气候变化信号。38图A-6:在SSP370方案下,Mahanga站上的气候变化信号,强调了EQM对趋势的通胀影响,而没有明确的趋势保存。
1. 简介 微波雷达测量云层和降水的一大优势是能够根据雷达反射率因子 Z 检索定量内容数据。这可以通过设计基于 Z 与各种微物理参数(例如冰水含量 IWC 或降雨率)之间的经验关系的算法,或基于将 Z 与其他测量值相结合的多种传感器方法来实现。然而,由于大气中微物理条件的多样性,算法只需要应用于那些被认为有效的条件。换句话说,首先需要确定目标,然后选择合适的算法。算法选择过程取决于云相以及水文气象密度、形状和大小分布等基本因素。例如,虽然卷云、高层云和积雨云的上部都是以冰相云为主的云,但不可能应用单一算法来检索这些目标中的 IWC:卷云通常只包含单个冰晶,高层云在较高温度下可能包含低密度冰晶聚合体,而积雨云可能结合了冰晶、雪花、结霜颗粒、霰甚至冰雹。不同类型的云通常受不同的云动力学过程控制,具有不同的微物理特性,从而导致不同的云辐射强迫 (H
摘要。气候变化是21世纪人类面临的最大环境挑战之一。这种变化对世界,尤其是对地中海南部的负面影响。气候预测预测降水量减少,山区地区受到最严重的打击。气候变异性影响的强度将特别影响潮湿和亚湿润地区,例如摩洛哥北部的Ouergha流域。这项研究的目的是分析1960年至2020年之间年度降水的演变,并评估其对生物气候阶段时空演化的影响,并根据两个方案(RCP4.5和RCP8.5)进行生物气候阶段的未来预测。该研究的结果表明供水大幅下降,估计在研究期间约为30%。降水量急剧下降标志着潮湿季节的几个月。这种下降对当地生态系统的影响是多种多样的。半干旱和亚湿生物气候的阶段取代了潮湿和超人的阶段,而RCP场景表明,变化率达到34.4%。这导致了干旱季节水危机的扩增。关键字:气候变异性,生物气候阶段,降水,进化,Ouergha流域,摩洛哥。
全球变暖影响了格陵兰的气候,包括格陵兰冰盖(Gris),其外围冰川和冰盖(GIC)以及周围无冰的苔原(Bintanja&Selten,2014; Mernild et al。,2015; Shepherd&Wingham,2007; imbie Team,2020;北极扩增会导致绿地过度变暖(Zhang等,2022),降水降雨而不是下雪(Dou等,2019; Huai等,2021; Serreze等,2009)。对于强烈的气候变暖场景,降雨甚至有望成为北极降水的主要形式(Bintanja&Andry,2017年)。Screen和Simmonds(2012)表明,格陵兰降雪的减少主要是由于1989 - 2009年期间降水阶段的变化(降雪至雨)引起的,而总降水仍然在很大程度上恒定。dou等。(2019)发现,融化季节液体沉淀的增加是北极海冰融化的关键因素。详细了解降雪到降雨变化背后的过程也将有助于更准确地评估对水文学/径流,永久冻结,生态系统,海冰静修和冰川融化的影响(Bintanja,2018年)和链接的社会生态系统(McCrystall等人,20221年)。
负责此过程的酶称为酪氨酸酶,有时被称为多酚氧化酶,单酚氧化酶,酚酶或儿茶醇酶。它存在于人类,植物,微生物和真菌中。黑色素颜料都需要该酶为必不可少的成分。酪氨酸酶存在于动物生物中,尤其是在皮肤,头发和眼睛的颜料中。酪氨酸酶可能会导致与其固有颜色无关的食物的变暗。诸如果汁和葡萄酒之类的饮料可能会出现外观和风味的下降,以及浊度和降水的发生。经常是由酶促过程引起的水果和蔬菜中褐变的不良现象,需要避免。酪氨酸酶抑制剂用于阻止导致酪氨酸酶酶褐变的催化氧化。当前,这些基本成分通常在皮肤美白溶液中,尤其是在化妆品领域中。此外,酪氨酸酶抑制剂在治疗与黑色素色素沉着相关的皮肤问题方面具有实际应用。此外,酪氨酸酶抑制剂在竞争和可逆地阻碍了人类黑素细胞酪氨酸酶的活性,从而阻碍了黑色素的产生。