《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)
根据气候模型输出,降级或超分辨率为决策者提供了有关气候变化的潜在风险和影响的详细高分辨率信息。机器学习算法证明自己是有效,准确的缩小方法。在这里,我们展示了一种基于生成的,基于扩散的降尺度方法如何给出准确的降尺度结果。我们专注于一个理想化的环境,其中我们在0时恢复ERA5。25◦以2◦分辨率从粗粒子版本分辨率。与标准的U-NET相比,基于扩散的方法具有优异的精度,尤其是在细尺度上,正如光谱分解所强调的那样。另外,生成方法为用户提供了可用于风险评估的概率分布。这项研究强调了基于扩散的降尺度技术在提供可靠和详细的气候预测方面的潜力。
1 除非另有说明,所有传感器规格在 25°C、Vdd = 5V、绝对压力 = 966 mbar 和水平流动方向有效。 2 slm:在标准条件下(T = 20 °C,p = 1013.25 mbar)测量的质量流量,单位为升/分钟。 3 对于“典型值”,CpK 目标为 0.67(95% 的传感器在典型值限值内)。 4 对于“最大值”,超出此限值的传感器将不发货,CpK 目标为 1.33。 5 包括偏移、非线性、滞后。 6 总精度/噪声水平/分辨率是偏移和跨度精度/噪声水平/分辨率的总和。 7 精度适用于 T(气体)=T(芯片)。 8 %mv = % 测量值 = % 读数。 9 噪声水平定义为单个传感器读数的标准偏差,以全采样率测量(典型值:噪声水平的平均值;最大值:至少99.99% 的传感器的噪声水平低于指示值)10 如果适用,这些影响需要添加到初始值中
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
DNA2VEC载体。单词嵌入被广泛用于自然语言处理(NLP),可使用固定长度向量有效地将单词映射到高维空间中[19]。这个概念也已应用于DNA序列[20]。在这项研究中,我们利用了预训练的单词向量来嵌入DNA序列。我们通过窗口大小m(m = 3)和步长s(s = 1)进行长度n的DNA样本,然后获得长度m xi∈{x 1,x 2,x 3,...,x n-2}的N-2 DNA序列。每个X I可以在衍生自DNA2VEC的预训练的DNA载体基质中找到[21]。我们使用ei∈Rk来表达缝隙I序列的k(k = 100)维矢量,然后将我们的序列x i转换为e ei∈{e 1,e 2,e 3,...,e n-2}。最后,对于每个长度n的样本,它可以嵌入为:e 1:n -2 = e1⊕e2 e 2 e 2⊕e n -2(1),其中⊕表示串联算子。
摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
引言与经济发展和外部环境的相关性是能源部门与阿鲁巴国家战略计划(NSP)2020-2022,2030年议程及以后的相关性。能源部门对于阿鲁巴的经济和支付平衡至关重要。能量在几乎所有社会活动中都起着作用。与其他国家一样,能源的成本价格是经济增长和社会经济发展的强大决定因素。因此,NSP的一个重要战略目标是确保所有人的能源获得可负担的能源,以增强经济中的购买力并实现经济增长。在这种情况下,对化石燃料的依赖性及其历史上波动的价格波动造成了生活成本,做事成本的不确定性,因此
对于 p ≥ 1,令 ℓ p 表示具有有限 p 阶范数的实值序列 x ∈ RN 的空间 ∥ x ∥ p = ( ∑ i | xi | p ) 1/ p 。对于任何 n ≥ 1 和任何 x 1 , ... , xn ∈ ℓ 2,存在 y 1 , ... , yn ∈ ℓ n 2 ,使得对于所有 i , j ∈{ 1, ... , n } ,∥ xi − xj ∥ 2 = ∥ yi − yj ∥ 2 。这直接源于希尔伯特空间的任何 n 维子空间都与 ℓ n 2 等距。事实上,甚至存在这样的 y 1 , ... , yn ∈ ℓ n 2通过考虑 n − 1 个向量 x 2 − x 1 , ... , xn − x 1 ,我们可以得到 ℓ n − 1 2 中的任意 n 个点都可以等距嵌入到 ℓ n − 1 2 中。通过考虑 n 点集 { 0, e 1 , ... , en − 1 } ⊆ R n − 1 ,其中 ei 是第 i 个标准基向量,不难看出维度 n − 1 是等距嵌入的最佳维度。Johnson-Lindenstrauss 引理 [JL84] 建立了一个惊人的事实,即如果我们允许少量误差 δ > 0 ,那么更好的“降维”是可能的。也就是说,对于任何 n ≥ 1 ,任何点 x 1 , ... , en − 1 } , xn ∈ ℓ 2 , 且任意 0 < δ < 1 , 存在 n 个点 y 1 , ... , yn ∈ ℓ d 2 , d = O ( δ − 2 log n ) , 并且对于所有的 i , j ∈{ 1, ... , n } ,
微/纳米结构对热导率的影响是一个具有重大科学意义的课题,对热电技术尤其重要。目前的理解是,结构缺陷主要通过声子散射降低热导率,其中描述热传输时声子色散和声速是固定的,特别是当化学成分不变时。对 PbTe 模型系统进行的实验表明,声速随内部应变的增加而线性减小。这种材料晶格的软化完全解释了晶格热导率的降低,而无需引入额外的声子散射机制。此外,我们表明,高效率 Na 掺杂 PbTe 的热导率降低和随之而来的热电品质因数(zT > 2)的提高主要归因于这种内部应变引起的晶格软化效应。虽然已知非均匀内部应变场会引入声子散射中心,但这项研究表明,内部应变也能平均软化材料晶格,从而改变声速和声子色散。这为控制晶格热导率提供了新途径,超越了声子散射,利用微结构缺陷和内部应变。在实践中,许多工程材料都会表现出软化和散射效应,就像硅中显示的那样。这项研究为能源材料、微电子和纳米级传热领域的热导率研究带来了新的启示。
