何文伟博士现为斯坦福大学理论物理研究所博士后学者,研究非平衡量子多体现象和新兴量子技术的应用。此前,他是哈佛大学的摩尔博士后研究员,与 Mikhail Lukin 教授和 Eugene Demler 教授一起工作。从 2022 年 8 月开始,他将担任新加坡国立大学校长青年(助理)教授。何文伟于 2017 年在日内瓦大学师从 Dmitry Abanin 教授获得博士学位,2015 年在滑铁卢大学/圆周研究所师从 Guifre Vidal 教授获得理学硕士学位,2013 年在普林斯顿大学获得学士学位,与 Duncan Haldane 教授一起工作。摘要:普遍性是指复杂系统普遍属性的出现,这些属性不依赖于精确的微观细节。量子热化是强相互作用量子多体系统非平衡动力学的一个例子,其中局部区域随着时间的推移变得由吉布斯集合很好地描述,而该集合仅受少数几个系统参数(例如温度和化学势)控制。局部区域与其补体(“浴”)之间产生的大量纠缠是这种普遍性出现的关键。在这次演讲中,我将介绍一种新的普遍行为,它源于某些类型的量子混沌多体动力学,超越了传统的热化。我将描述单个多体波函数如何编码由小子系统支持的纯态集合,每个纯态都与局部浴的(投影)测量结果相关。然后,我将展示这些量子态的分布如何接近均匀随机量子态的分布,即集合形成量子信息理论中所谓的“量子态设计”。我们的工作为研究量子混沌提供了一个新视角,并在量子多体物理、量子信息和随机矩阵理论之间建立了桥梁。此外,它还提供了一种实用且硬件高效的伪随机态生成方法,为设计量子态层析成像应用和近期量子设备的基准测试开辟了新途径。
对于 p ≥ 1,令 ℓ p 表示具有有限 p 阶范数的实值序列 x ∈ RN 的空间 ∥ x ∥ p = ( ∑ i | xi | p ) 1/ p 。对于任何 n ≥ 1 和任何 x 1 , ... , xn ∈ ℓ 2,存在 y 1 , ... , yn ∈ ℓ n 2 ,使得对于所有 i , j ∈{ 1, ... , n } ,∥ xi − xj ∥ 2 = ∥ yi − yj ∥ 2 。这直接源于希尔伯特空间的任何 n 维子空间都与 ℓ n 2 等距。事实上,甚至存在这样的 y 1 , ... , yn ∈ ℓ n 2通过考虑 n − 1 个向量 x 2 − x 1 , ... , xn − x 1 ,我们可以得到 ℓ n − 1 2 中的任意 n 个点都可以等距嵌入到 ℓ n − 1 2 中。通过考虑 n 点集 { 0, e 1 , ... , en − 1 } ⊆ R n − 1 ,其中 ei 是第 i 个标准基向量,不难看出维度 n − 1 是等距嵌入的最佳维度。Johnson-Lindenstrauss 引理 [JL84] 建立了一个惊人的事实,即如果我们允许少量误差 δ > 0 ,那么更好的“降维”是可能的。也就是说,对于任何 n ≥ 1 ,任何点 x 1 , ... , en − 1 } , xn ∈ ℓ 2 , 且任意 0 < δ < 1 , 存在 n 个点 y 1 , ... , yn ∈ ℓ d 2 , d = O ( δ − 2 log n ) , 并且对于所有的 i , j ∈{ 1, ... , n } ,
引言鉴于微生物群落的高度动态和复杂性,识别和预测其时间依赖性模式对于理解其结构和功能至关重要。纵向微生物组样本的收集为捕捉微生物群落的动态及其与宿主表型的关联提供了独特的机会。然而,纵向微生物组数据的性质带来了一些分析挑战。首先,微生物组数据是高维的,降维是指导分析和解释的关键。其次,宿主内变异的模式可能随时间而改变,并因宿主而异,这使得提取微生物特征的稳健时间模式具有挑战性 1 。第三,由于纵向研究固有的实际限制(例如,错过患者随访或样本采集不一致),多个宿主经常缺少时间样本,这会导致跨宿主的时间采样不规则 2–5 。
钙成像因其能够记录大量神经元群的能力而被广泛采用。为了总结神经活动的时间过程,降维方法可能特别有用,这种方法已广泛应用于群体脉冲活动。然而,目前尚不清楚应用于脉冲活动的降维方法是否适用于钙成像。因此,我们根据标准降维方法对设计选择进行了系统研究。我们还开发了一种同时执行反卷积和降维的方法(钙成像线性动态系统,CILDS)。CILDS 最准确地从模拟钙成像数据中恢复了单次试验、低维时间过程。CILDS 在斑马鱼幼虫和小鼠的钙成像记录方面也优于其他方法。更广泛地说,这项研究为在不同的实验环境中使用降维来总结大量神经元群的钙成像记录奠定了基础。
线性高斯探索性工具(例如主成分分析 (PCA) 和因子分析 (FA))广泛用于探索性分析、预处理、数据可视化和相关任务。由于线性高斯假设具有限制性,因此对于非常高维的问题,它们已被稳健、稀疏扩展或更灵活的离散-连续潜在特征模型所取代。离散-连续潜在特征模型指定依赖于数据子集的特征词典,然后推断每个数据点共享这些特征的可能性。这通常是使用关于特征分配过程的“富者得富”假设来实现的,其中词典试图将特征频率与其解释的总方差部分结合起来。在这项工作中,我们提出了一种替代方法,可以更好地控制特征到数据点的分配。这种新方法基于双参数离散分布模型,该模型将特征稀疏性和词典大小分离,从而以简约的方式捕获常见和罕见特征。新框架用于推导一种新型自适应因子分析变体 (aFA) 以及自适应概率主成分分析 (aPPCA),能够在各种场景中灵活地发现结构和降低维度。我们推导出标准吉布斯采样以及有效的期望最大化推理近似,这些近似以更快的数量级收敛到合理的点估计解。所提出的 aPPCA 和 aFA 模型的实用性在特征学习、数据可视化和数据白化等标准任务上得到了证明。我们表明,aPPCA 和 aFA 可以为原始 MNIST 或 COLI-20 图像提取可解释的高级特征,或者在应用于自动编码器分析时
摘要:目的:本研究旨在评估各种降维方法(包括主成分分析 (PCA)、拉普拉斯评分和卡方特征选择)对脑电图 (EEG) 数据集分类性能的影响。方法:我们应用了降维技术,包括 PCA、拉普拉斯评分和卡方特征选择,并使用线性回归、K 最近邻 (KNN) 和朴素贝叶斯分类器评估了它们对 EEG 数据分类性能的影响。对模型的分类准确性和计算效率进行了评估。结果:我们的研究结果表明,所有降维策略通常都能提高或保持分类准确性,同时减少计算负荷。值得注意的是,PCA 和 Autofeat 技术可提高模型的准确性。结论:使用降维技术可以通过减少计算需求而不影响准确性来增强 EEG 数据分类。这些结果表明,这些技术有可能应用于既需要计算效率又需要高精度的场景。本研究中使用的代码可在https://github.com/movahedso/Emotion-analysis找到。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程