如今,不同类型的航天器和其他航空航天车的可重复使用性是非常重要的任务(由于降低了使用成本)。因此,可靠设计的恢复系统对于此类项目至关重要。在本文中描述了用于发声火箭的降落伞恢复系统的开发和测试。该系统由三个降落伞(Drogue,Pilot和Main Chute)和烟火启动设备激活系统组成。低体积(直径约150毫米),低质量,低成本和可重复使用性是主要的设计标准。提出和讨论了不同的弹出解决方案。本文还讨论了为降落伞弹出的设计和测试烟火启动装置。给出了确定降落伞几何形状的计算。进行了风洞中的几项测试,并将结果与分析数据进行了比较。测试站和数据采集系统也被涵盖。主要目标是计算主降落伞的抢夺力是设计降落伞恢复系统的关键要素之一。减少这些力量不同的灌溉系统。
• 《国内税收法典》(“IRC”)规定,根据 IRC 4999 应缴纳的消费税应作为所得税进行管理。参见 IRC 4999(c)(2)。因此,IRC 6501 的三年诉讼时效将适用,因为在大多数情况下,收入并没有大幅少报。• 降落伞检查的结果可能会影响该国其他地区的现任或前任雇员或独立承包商的纳税申报表,因此应采取措施,让这些受影响的纳税人继续享受该法规。 • 有关应税实体支付金色降落伞的 IRC 280G 最终法规于 2003 年 8 月 4 日发布,并适用于任何因 2004 年 1 月 1 日或之后发生的所有权或控制权变更而支付的款项。对于因 2004 年 1 月 1 日之前发生的所有权或控制权变更而支付的款项,纳税人可以依赖 1989 年拟议法规、2002 年拟议法规或 2003 年 8 月 4 日的最终法规。 • 最终财政部法规 1.280G-1 以问答形式发布。本 ATG 中对问题和答案 (Q/A) 的任何引用均与最终法规有关。应税实体支付的金色降落伞的关键代码和法规是 IRC 280G;IRC 4999 和美国财政部法规 1.280G-1。 • 注意事项:2017 年《减税与就业法案》(“TCJA”)颁布了 IRC 4960,该法案对“适用免税组织”(“ATEO”)的某些高管薪酬安排征收与公司税率(目前为 21%)相等的消费税。该税适用于受保员工离职后支付的薪酬。IRC 4960 于 2017 年 12 月 31 日或之后生效。
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。包括多个马赫数和 AOA 表的高端空气动力学模型 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
自 1988 年 5 月以来,Carl 一直担任 Sandia 空气动力学部门的经理。除了降落伞之外。Carl 管理再入系统、导弹、炸弹、炮弹和火箭的空气动力学和热分析项目和研究计划。他负责监督所有美国核潜艇降落伞系统的设计、开发和储备维护的技术方面。Carl 负责计算空气动力学和流体动力学以及空气动力学和高超音速风洞的研究和技术开发计划。他负责托诺帕和考伊试验场的靶场安全、分布式计算机组织以及他在空气动力学方面撰写了大约 75 篇出版物。
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。高端空气动力学模型,包括多个马赫数和 AOA 表 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
三.文献综述 ................................................................................................................33 A. 介绍 ................................................................................................................33 B. 伤害研究 ..............................................................................................................33 C. T-11 ATPS 问题/关注点 ........................................................................34 1. T-11 备用降落伞意外启动 .............................................................38 2. 减少角通风口交叉倒置 .............................................................................39 3. 减少角通风口缠绕 .............................................................................40 4. 降低主曲线销的灵敏度 .............................................................................41 5. 减小降落伞尺寸和重量 .............................................................................42 6. 提高对降落伞完全或部分故障的认识 ................................................................................................43 7. 缩短降落伞展开顺序 .............................................................................44 8. 降低降落伞包装程序的复杂性 ................................................................................................44 D. 总结 ................................................................................................................45
摘要:空投试验中飞机与降落伞的跟踪至关重要,需要研究降落伞的打开状态和飞行轨迹,如何高效准确地获取降落伞的形变数据和轨迹数据成为越来越多学者的研究方向。目前实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得空投过程中降落伞的图像序列,但这些方法无法获得降落伞的运动轨迹,且易受人为因素的干扰。本文设计了TuSeSy智能转台伺服系统,可自动跟踪空投试验中的飞机与降落伞,具体而言,TuSeSy根据实际拍摄图像与跟踪算法推断图像的差异生成控制指令(从而真正跟踪目标)。此外,我们提出了一种基于图像帧差和光流的有效多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量的实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。
三.文献综述 ................................................................................................33 A.介绍 ................................................................................................33 B.伤害研究 ................................................................................................33 C. T-11 ATPS 问题/关注 ......................................................................34 1.T-11 备用降落伞意外启动 ......................................................38 2.减少角通风口交叉倒置 .............................................................39 3.减少角通风口缠绕 .............................................................40 4.降低主曲线销的灵敏度 .............................................................41 5.减小降落伞尺寸和重量 .............................................................42 6.提高对降落伞完整或部分故障 ................................................................................................43 7.缩短降落伞展开顺序 ..............................................................44 8.降低降落伞打包程序的复杂性 ................................................44 D. 总结 ............................................................................................................45
摘要:跟踪飞机与降落伞在空投试验中起着至关重要的作用。研究降落伞的打开状态和飞行轨迹是十分必要的。如何高效准确地获取降落伞的形变数据和轨迹数据,越来越多的学者开始研究。目前,实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得降落伞在空投过程中的图像序列。但这些方法无法获得降落伞的飞行轨迹,且易受人为因素的干扰。本文设计了一种智能转台伺服系统TuSeSy,可自动跟踪空投试验中的飞机与降落伞。具体来说,TuSeSy根据实际拍摄图像与跟踪算法推断图像之间的差异生成控制命令(从而真正跟踪目标)。此外,我们提出了一种有效的基于图像帧差异和光流的多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。
试验部队和空中投送系统部门以及他的家人说:“我无法形容我的谦卑。获得认可和被列入名人堂非常棒,但是当士兵、我的同事和领导层过来真正交谈时,你会感动不已。我只想感谢所有人,”霍尔声音有些哽咽地说道。霍尔解释说,成为一名陆军降落伞装配工需要做三件事:降落伞打包,打包所有人员降落伞;重型打包和重型空投,装配重型设备负载并打包重型设备降落伞;维护,维护和缝制以及修理空中物品和降落伞。霍尔在其整个职业生涯中都做过这些工作,他说:“作为一名降落伞装配工,跳伞者将他们的生命交到你手中,你的工作是确保他们的降落伞正常运转并让他们安全落地。”