可生物降解的材料是可以被常见的生物学剂分解为与生命兼容的简单分子,例如水和二氧化碳。例子包括木材,羊毛,纸,纸板和微生物,例如昆虫,细菌或真菌。可生物降解产品的优点包括降低环境污染和分解过程中养分的回收利用。这减少了持续垃圾的积累,这与不可生物降解的材料(如塑料瓶或尼龙袋)不同。但是,某些中间降解产物可能是有毒的,甚至比原始分子更重要。例如,农业中使用的一些农药因其毒性而臭名昭著。可生物降解材料的生产是一种增长的趋势,这是由于消费者对减少环境损害的需求的驱动。越来越多的企业在包装中使用纸和非塑料袋,减少废物和污染。从玉米或小麦淀粉的可生物降解塑料的发展也已获得动力。这些塑料比传统的基于石油的塑料更快地降解,其中一些产品在六到二十四个月内分解。汽车行业还致力于为汽车内部和保险杠开发可生物降解的材料。研究人员已为各种可生物降解的塑料(包括用黑麦或压缩纤维制成的塑料)提供了专利。该研究表明,只有40%的“可堆肥”产品实际上在家庭堆肥中分解。公司通常对产品的可持续性秘密,使消费者感到困惑。生态意识的人努力购买真正的可生物降解产品,但最终可能会得到虚假的索赔。在此处给定文章文本亚麻是一种自然纤维,该天然纤维从亚麻植物中获得,可以在几年内轻松降解。这种环保的纺织品没有微塑料和污染物,这些污染物在洗涤时会释放。与聚酯和尼龙等合成材料相比,产生亚麻的能量和水需要更少。蓖麻油是从Ricinus Communis植物的种子中提取的,这是一种可生物降解的材料,广泛用于美容产品。公司现在正在其太阳镜框架中使用蓖麻油来创建生态友好的眼镜。合成弹性体由不可生物降解的石油制成。但是,公司开发了可生物降解类型的弹性体,这些弹性体源自可再生原材料,例如甘蔗和玉米。软木是一种天然材料,它是从软木橡树树皮获得的,可用于包括袋子在内的各种产品中。它也可以变成人造皮革,用于手袋和钱包。木薯是单使用袋中使用的塑料的可生物降解替代品。这些袋子是从木薯中提取的,并与有机成分结合使用,以创建可生物降解的,类似塑料的材料可生物降解材料,越来越多地用作传统不可降解材料的可持续替代品。这些材料很容易被自然环境中的微生物分解,从而使它们安全地在土壤和水道上处置。可生物降解材料的示例包括纸张,纸板和有机废物。可生物降解的材料可以由有限范围的有机天然材料制成,但是它们的潜在用途受到这种限制的限制。聆听有关可生物降解材料的文章可能会提供对环保产品(例如可生物降解牙膏)的宝贵见解。常见的非生物降解产品的无塑料替代品,许多日常物品都是不可生物降解的,但仍然具有环保替代品。例如,有机植物物质在短短两个月内分解。但是,其他材料(例如棉质T恤)可能需要长达六个月的时间才能分解,而用有机动物材料制成的羊毛袜子可以持续一年至五年。同样,诸如塑料袋之类的合成材料的分解时间非常长,超过500年,而泡沫聚苯乙烯杯也超过了这个时间表。同样,铝罐可能会在八十至一百年中分解。选择产品时,必须意识到它们的材料组成。用纸板或纸等材料制成的可生物降解包装的物品更可能是环保的。但是,应谨慎处理含有塑料或其他不可生物降解材料的材料。作为消费者,我们还必须提防公司使用的绿色策略,这些策略可能会误导消费者相信他们的产品在不限制的情况下对他们的产品很友好。在没有完全可生物降解的选项的情况下,研究产品的可重复性和可回收性可以帮助做出更明智的选择。
当前药物化学面临的主要挑战之一是使用小分子药物靶向非编码 RNA。与传统的药物发现方法不同,它需要改变视角才能取得成功。正如 Disney 及其同事 1 在本期《ACS Central Science》中所描述的那样,针对 SARS-CoV-2 RNA 的特异性配体的发现、核糖核酸酶靶向嵌合体 (RIBOTAC) 的开发以及使用尖端化学生物学工具对细胞内作用机制的详细研究,凸显了新化学模式可能对未来疗法产生的影响。这项工作的应用领域涉及针对导致当前全球健康危机的病毒 SARS-CoV-2。人们在药物重新定位、大规模筛选和疫苗开发方面做出了许多努力;然而,显然需要研究用于创新治疗方法的新靶点和新生物活性分子,以增加抗病毒药物库。RNA 被认为是基因表达过程中的中间体,现在是药物发现的有效靶点。 2 RNA 是一种大分子,参与转录、翻译和基因表达调控等重要生物过程。事实上,非编码 RNA 表达和/或功能的许多失调与许多病理直接相关,例如神经系统疾病、心脏病或癌症。最值得注意的是,超过 70% 的人类基因组在非编码 RNA 中转录,而只有 1.5% 编码蛋白质。由于这些蛋白质中只有一小部分代表上市药物的实际靶标,因此很明显,将非编码 RNA 添加到潜在治疗靶标将大大增加药物开发的前景。由新型 RNA 病毒 SARS-CoV-2 引起的冠状病毒大流行凸显了 RNA 靶向疗法在治疗 RNA 病毒引起的感染方面的潜力。这些疗法之前曾在文献中用于 HIV、HCV 或流感病毒。自 20 世纪 40 年代第一批 RNA 配体作为抗生素进入市场以来,新的 RNA 靶向药物的发现取得了重大进展,例如氨基糖苷类或四环素类,以及最近的恶唑烷酮类。3 近年来,RNA 结合剂的进展包括不同类型的原创、有时不寻常的药物发现策略。还开发了用于识别非常特异性 RNA 配体的先导识别策略,例如 Inforna。4 后者是一种基于二维组合筛选 (2-DCS) 和通过测序 (StARTS) 实现的结构-活性关系相结合的技术。将这种统计方法应用于筛选结果可以预测 RNA 库成员的亲和力和选择性并评分结合相互作用。4 该方法已被证明非常有效,可以成功预测特定 RNA 二级结构的化合物。各种筛选技术(例如微阵列或基于荧光的检测)也已用于发现 RNA 配体以及基于结构的选择性配体设计。5-7
摘要研究了带有硅胶支持的上流厌氧反应器中细菌群落的演变,该反应堆不断地用纯甘油(第0-293天)和粗甘油(第294-362天)喂食。来自以前甘油降解反应堆的生物量用作接种物。用粗甘油获得了1,3-丙二醇(PDO)(PDO)(PDO)(PDO)(0.62 mol.mol-gly-Gly-1和14.7 G.l -1 .d -1)。接种物的多样性较低,乳酸杆菌(70.6%)和克雷伯氏菌/劳尔特拉(23.3%)的优势占主导地位。在用纯甘油喂养293天后,在附着的生物膜或生物量中生长的悬浮液中,两个分类单元的丰度均下降到小于10%。梭子座属和雷诺罗卡科家族的成员随后成为多数。在用粗甘油进食后的时期,梭状芽胞杆菌仍然是生物膜中的多数属。然而,它在悬浮液中部分替换为非甘油降解细菌的Eubacterium。这一事实以及生物膜中其他甘油降解属的流行率,例如磷酸胶产物和乳酸杆菌,表明附着在硅酮支撑上的细菌负责将甘油转化为1,3-PDO。因此,为了提高1,3-PDO的生产率,一种良好的方法是最大化反应堆支撑量。其他不降解甘油的属,例如厌氧菌和乙美环,以牺牲细胞衰减材料为代价。规范对应分析表明,甘油的起源是生物反应器操作期间要考虑的重要变量,用于产生1,3-PDO,而甘油加载速率却不是。
为此,在可生物降解的聚合物和三种可生物降解聚合物的商业混合物(在中等含量和嗜热条件下)进行了批次厌氧消化实验。在中嗜和热嗜热条件下,仅聚(3-羟基丁酸)(PHB)和热塑性淀粉(TPS)表现出快速(25-50天)和重要(分别为57-80.3%和80.2-82.6%)向甲烷的转化为甲烷。从乳酸(PLA)(PLA)的甲烷生产速率非常低,在一定程度上,需要500天才能达到最终的甲烷产生,这对应于PLA转化为74.7-80.3%的PLA转化。在嗜热条件下,PLA的甲烷生产速率大大提高,因为仅需要60至100天才能达到相同的终极甲烷产生。乳酸利用细菌,如易二菌,摩尔菌和tepidanaerobacter很重要。同样,在38°C和58°C的TPS消化过程中突出了淀粉降解的细菌(来自梭状芽孢杆菌)。先前已知的PHB降解器(即,在pHB的嗜嗜和热嗜热AD期间,观察到肠杆菌,肠杆菌,delafieldii和cupriavidus)。
服装和鞋类行业因其对环境的影响而面临越来越多的审查,特别是在废物管理方面。传统上,产品通常最终被填埋,在那里它们可能需要几十年甚至几个世纪才能分解。例如,塑料材料可以持续 100 多年,对长期污染造成重大影响。塑料的生物降解性和可堆肥性只能通过测试来测量和验证。实施严格评估协议的企业不仅可以更深入地了解其产品,还可以获得支持可持续性声明和培养消费者信任的数据。
自生产和使用以来,化石燃料就影响了生态系统,从而对其生物多样性造成了重大损害。细菌生物修复可以为该环境问题提供解决方案。在这项研究中,新物种异翅目Peretonis sp。nov。在体外和硅分析中,在碳氢化合物降解和生物表面活性剂生产方面,已将4D.3 T与其他密切相关的物种进行了表征和比较。生物表面活性剂在微生物碳氢化合物降解中起着重要作用,通过乳化碳氢化合物并使其可用于微生物降解机制。进行的测试显示了所有菌株的阳性结果或多或少。在合成生物表面活性剂中,所有测试的菌株均显示出三种互补测定(CTAB,溶血和E 24%)中的生物表面活性剂活性,并且在大多数等异端菌菌株中都预测了在硅中的Rhamnolipid合成基因。关于碳氢化合物降解,所有分析的异翅目菌株都提出了推定的基因,这些基因负责芳香族和烷烃碳氢化合物的有氧和厌氧降解。总体而言,我们的结果突出了异翅目属的代谢多样性和生化鲁棒性,该属被认为在碳氢化合物生物修复领域中引起了人们的关注。
DNA 甲基化 (DNAme) 是一种关键的表观遗传标记,可调节维持整体基因组稳定性的关键生物过程。鉴于其多效性功能,对 DNAme 动力学的研究至关重要,但目前可用的干扰 DNAme 的工具存在局限性和严重的细胞毒性副作用。在这里,我们提出了允许通过 DNMT1 耗竭进行可诱导和可逆 DNAme 调节的细胞模型。通过动态评估通过细胞分裂诱导的被动去甲基化的全基因组和位点特异性效应,我们揭示了 DNMT1 和 DNMT3B 之间的协同活动,但不是 DNMT3A,以维持和控制 DNAme。我们表明,DNAme 的逐渐丧失伴随着异染色质、区室化和外周定位的逐渐和可逆变化。DNA 甲基化丧失与由于 G1 停滞而导致的细胞适应性逐渐降低相吻合,并伴有轻微的有丝分裂失败。总之,该系统可以进行具有精细时间分辨率的 DNMT 和 DNA 甲基化研究,这可能有助于揭示 DNAme 功能障碍与人类疾病之间的病因联系。
新霉素是一种氨基糖苷抗生素,被广泛用于预防疾病的兽医医学。生物降解是从环境中去除新霉素的关键途径。迄今为止,仅记录了Ericae的白rot真菌versicolor和Ericoid Mycorrhizal真菌rongus rhizoscyphus ericae,以有效地降解新霉素。然而,尚无报道称为新霉素能力的细菌物种,突显了与新霉素修复有关的微生物研究的显着差距。在这项研究中,分别通过富集培养和逐渐适应性化,从药物废水和无新霉素的红树林土壤中分离出了cuprividus basilensis和velezensis。这些分离株显示新霉素的降解速率为46.4和37.6%,在96小时内,100 mg·l -1新霉素作为唯一的碳源。cuprividus basilensis的补充硫酸铵的降解率达到50.83%,而velezensis芽孢杆菌的降解速率为58.44%的可溶性淀粉的优质降解效率为58.44%。我们的发现为新霉素的微生物降解提供了宝贵的见解。首次分离出两种新霉素的细菌。在4天内,这两种物种都将新霉素降解为唯一的碳源或在合成代谢条件下。微生物适应新霉素应激,并超过了受污染源的微生物。这挑战了以下假设:抗生素降解的微生物主要起源于污染的环境。这些发现扩大了已知的新霉素降解微生物的多样性,并证明了它们从药物废水中去除难治性新霉素的潜力。
我感谢总数数字平台的团队,然后感谢我论文的工业部分发生的总素,无论是在纳米诺诺夫,游乐场,下一个还是情节。感谢您的所有这些日常交流,在各种项目演示会议或Mathias,以及咖啡馆甚至Mario Kart附近。我还要感谢Saft的BMM团队对我们曾经的电池的热情欢迎和教学法。尤其是我感谢所有博士生,我们的长老,优化专家Naoufal,向我们展示了路;巴蒂斯特,谢赫纳和阿明,我与他们一起开始论文; Yagnik,Ali,Elie和Nouha渗透到了这些日子,在面对面(和外部)中献出了生命,所有这些讨论以及这些令人兴奋的多元文化交流;还有瓦西尔,哈立德和阿玛尔;所有这些博士旅行伴侣。
电子组件是由不同材料组合组成的复杂系统,这些系统会随着第二种热力学定律的变化而发生变化。其质量或功能的损失在降低的电子组件的性能或行为中反映出,这可能会导致其运行寿命的失败。因此,了解材料降解的物理学以及导致其确保组件可靠性的因素至关重要。本文着重于包装材料的降低物理学,这些物理通常暴露于环境和操作负载。本文的内容分为三个部分。首先,提出了包装技术和封装材料的概述。然后,审查了最常见的降解因素和与包装相关的故障模式。最后,讨论了硬件要求,包括专门的传感器,测量技术和数字双胞胎,以捕获降解效果并促进小电子级别的健康监测。