1格勒诺布尔阿尔卑斯大学,CEA,LITEN,DTS,LSA,INES,F-38000,法国2UniversitéClermontAuvergne-CNRS,ICCF,F-63000 Clermont-Ferrand,法国,法国,法国,作者:Romain Couderc couderc gerderc lomain coudercǀ emain.main.comain.coudcrc@ic.frc@ic。 +33479792361摘要数十年来,在操作太阳阵列中观察到了由紫外线暴露引起的光伏(PV)模块。不仅仅是一种美学上的不便,这种现象可以严重损害模块的性能,并通过封装的光保护损害其他降解机制。为了更好地理解当前材料中的这种反应,在紫外线照射下,具有紫外线或紫外线商业封装的HJT单子弹模块是在紫外线照射下老化的,并通过视觉检查,荧光成像和闪光测试对其进行检查。仅通过紫外线吸收器稳定的封装物进行了变色。一方面,紫外线吸收器光氧化是导致影响光传输到细胞的黄色发色团的形成。因此,它们导致光生电流的净减少,该电流在加速4200小时后达到4%。另一方面,他们的光漂白解释了模块边缘缺乏变色。根据当前封装配方的行为,必须提高紫外线吸收添加剂的稳定性,以确保设备在30年内的耐用性。限制全球变暖的最有害影响的简介,预计我们的社会的重大变化。太阳能光伏(PV)在过去十年中飙升,到2020年达到821 TWH。在发电方面,1.5°C的情况需要在全球能量混合物中急剧增加可再生能源部分[1]。到2030年需要8倍的容量才能达到零净排放到2050年,这是1.5°C的情况[2]。由于PV系统耐用性对其水平的能源成本(LCOE)[3]和生命周期评估(LCA)[4]的影响很高,因此必须对影响PV模块的不同降解模式进行彻底研究,以确保能量过渡。
本演示稿包含与未来事件和预期相关的陈述,因此构成《1995 年私人证券诉讼改革法》所定义的前瞻性陈述。本演示稿中使用时,“预期”、“相信”、“可能”、“估计”、“期望”、“打算”、“可能”、“展望”、“计划”、“预测”、“应该”、“将”等词语以及类似表达及其变体,只要与 Nurix Therapeutics, Inc.(“Nurix”、“公司”、“我们”或“我们的”)相关,即可识别前瞻性陈述。除历史事实陈述外,所有反映 Nurix 对未来的预期、假设或预测的陈述均为前瞻性陈述,包括但不限于有关我们未来财务或业务计划的陈述;我们未来的业绩、前景和战略;未来状况、趋势和其他财务和业务事项;我们当前和未来的候选药物;我们候选药物临床试验计划的计划时间和实施;提供临床更新和临床研究初步结果的计划时间;我们合作的潜在利益,包括潜在的里程碑和销售相关付款;我们的 DELigase 的潜在优势
第五章介绍了空蚀腐蚀造成的性能退化影响。获得了质量损失变化的函数,这可以确定被测钢的抵抗力,以及定位空蚀的各个阶段。得到的阻抗结果证明了超声波振动激励器的短期和长期影响。激励器运行的直接效应是系统阻抗的瞬时降低,当激励器关闭时,这种效应就会消失。阻抗谱形状的变化主要与反应物质量传输的加速有关,也与腐蚀产物层的“剥离”有关。第二种影响与空蚀腐蚀引起的性能下降有关,会导致被测系统阻抗不可逆地降低。本章提出
德克萨斯大学西南医学中心细胞生物学系 Kevin Mark 博士的实验室提供博士后培训职位,研究蛋白质质量控制和降解如何在发育过程中调节基因表达。Mark 实验室有几个令人兴奋的项目,涉及了解泛素-蛋白酶体系统靶向转录和翻译机制以影响细胞过程的机制,以及此类途径的破坏如何导致癌症和神经退行性疾病。博士后学者将有机会在令人兴奋、快速发展的生物医学科学领域工作,同时学习核酸和蛋白质生物学的最新方法。我们的实验室使用多种方法进行研究,包括基因组编辑、流式细胞术、共聚焦显微镜和蛋白质组学,以及标准生化技术,如克隆、免疫沉淀、蛋白质印迹和 RNAseq。博士后候选人将可以使用德克萨斯大学西南分校的众多共享设施,这些设施为高通量筛选、下一代测序、活细胞成像、质谱和低温电子显微镜 (cryo-EM) 提供支持。
定位空蚀的各个阶段。获得的阻抗结果证明了超声波振动激励器的短期和长期影响。激励器的直接影响是系统阻抗暂时降低,关闭后该影响消失。阻抗谱形状的变化主要与反应物传质的加速有关,同时也与腐蚀产物层的“剥离”有关。第二种类型的影响与气蚀腐蚀引起的退化有关,会导致测试系统的阻抗出现不可逆转的下降。本章建议
• 将水浴预热至 37 ± 2°C 以进行游离 DNA 降解步骤 • 将水浴预热至 95 ± 5 °C 以进行 DNA 提取步骤 • 准备与样品数量对应的 Cryotube TM 小瓶,在每个 Cryotube TM(游离 DNA 降解缓冲液)中移取 0.5 ml 激活缓冲液和 2 µl 游离 DNA 降解试剂 • 将所需数量的 DNApure 柱插入 1.5 ml 管(提供) • 所有离心步骤必须在室温下进行 1. 使用无菌镊子将过滤器折叠两到三次,以获得圆锥体,如图 1 所示 2. 将膜转移到含有游离 DNA 降解缓冲液的 Cryotube TM 小瓶中 注意:将膜过滤器插入小瓶时必须使圆锥体的尖端朝向 Cryotube TM 小瓶的顶部(图 1)
原始淀粉降解淀粉酶(RSDA)是一种酶,具有在不经历胶质化的情况下降解淀粉颗粒中的葡萄糖的能力。进行了这项研究,以探索和表征来自萨马林达卡朗穆斯河体水的细胞外RSDA产生细菌。在含有1%淀粉颗粒的养分琼脂中对RSDA活性进行了定性分析,在板块充满碘溶液后,具有RSDA活性的细菌菌落是细菌菌落周围细菌菌落周围的清晰光晕。14个细菌菌落中的5个细胞外分泌RSDA。使用二硝基水杨酸(DNS)方法测试了5种细菌的RSDA酶的淀粉酶活性。具有菌落代码KM 5的细菌的RSDA活性为0.332 U/ml。RSDA的最佳工作条件在pH 5和温度为40°C。使用16S rRNA基因鉴定细菌基因型,表明KM5是克雷伯氏菌SP,称为Klebsiella km5。
https://doi.org/10.26434/chemrxiv-2022-8hnrh-v2 ORCID:https://orcid.org/0000-0002-5449-2253 内容未经 ChemRxiv 同行评审。许可证:CC BY-NC-ND 4.0
提出了一种令人兴奋的策略来克服这些挑战,因为它通过诱导细胞浆 POI 与细胞内蛋白质降解机制的相互作用来消耗目的蛋白质 (POI)。这种方法使 TPD 能够靶向缺乏有效小分子抑制剂的困难蛋白质,并且由于 TPD 分子的催化性质,可以在亚化学计量比下实现更高的功效。7 在过去的二十年里,各种 TPD 工具,如分子胶降解剂、8,9 蛋白水解靶向嵌合体 (PROTAC)、10-12 特定和非遗传 IAP 依赖性蛋白质擦除器 (SNIPER)、13 降解标签 (dTAG)、14,15 自噬靶向嵌合体 (AUTAC)16 和自噬体束缚化合物 (ATTEC)17 已经得到开发。令人鼓舞的是,沙利度胺(一种在临床上使用数十年的药物)被证明可以作为分子胶降解剂发挥作用;18 其他 PROTAC 和分子胶也已进入临床试验。11,19 所有这些都预示着 TPD 平台具有良好的治疗潜力。尽管取得了这些成功,但挑战依然存在。例如,TPD 平台主要依赖于小分子结合剂和细胞内泛素蛋白酶体系统 (UPS),这限制了它们的应用范围,这些蛋白质含有胞浆结构域和可用的结合位点。实际上,跨膜蛋白、分泌蛋白和缺乏合适配体结合位点的细胞内蛋白构成了大多数治疗相关靶点。20 创新技术没有使用小分子,而是利用肽、蛋白质和核酸等生物制剂作为具有挑战性的 POI 的靶向结合剂。第一个 PROTAC 分子实际上是一种由 IkBa 磷酸肽(DRHDpSGLDSM)组成的肽基配体,21 而另一种来自缺氧诱导因子 1 亚基 a(HIF1a)的肽也经常用作 E3 连接酶 von Hippel-Lindau(VHL)的结合剂。22,23 最近,更多基于肽的 PROTAC 已被证明可以成功诱导蛋白质的降解,包括 Akt、24 Tau、25a-突触核蛋白、26 PI3K/FRS2a 27 和 X 蛋白。28 核酸也被用作结合剂来开发 TPD 系统,例如转录因子靶向嵌合体(TRAFTAC)、29 基于寡核苷酸的 PROTAC(O'PROTAC)30 和转录因子 PROTAC。 31 还有针对 RNA 结合蛋白的 RNA-PROTAC、针对 G4 结合蛋白的 32 G4-PROTAC 和基于适体的 PROTAC。34 此外,最近出现的 LYTAC、35、36 AbTAC、37 PROTAB 38 和 KineTAC 39 均使用抗体或纳米抗体作为 POI 结合剂,利用溶酶体实现细胞外和跨膜蛋白的靶向降解。即使有了这些最新技术,仍存在一个主要障碍:生物制剂的使用主要限于细胞外或跨膜蛋白,因为生物制剂缺乏渗透细胞的能力。我们最近证明了使用基于细胞渗透性的纳米抗体的降解剂可以降解传统上“无法用药”的细胞内 POI;这项工作描述了一种可能克服这最后一项主要障碍的方法。40
本杰明·J·斯坦顿、1 布鲁诺·L·奥利维拉、1 约翰·孔德、2 玛格达·内格拉奥、3 米格尔·戈迪尼奥·费雷拉、3.4 丽塔·菲奥尔 3 和贡卡洛·J·L·贝尔纳德斯 1.2 *