全球变暖影响了格陵兰的气候,包括格陵兰冰盖(Gris),其外围冰川和冰盖(GIC)以及周围无冰的苔原(Bintanja&Selten,2014; Mernild et al。,2015; Shepherd&Wingham,2007; imbie Team,2020;北极扩增会导致绿地过度变暖(Zhang等,2022),降水降雨而不是下雪(Dou等,2019; Huai等,2021; Serreze等,2009)。对于强烈的气候变暖场景,降雨甚至有望成为北极降水的主要形式(Bintanja&Andry,2017年)。Screen和Simmonds(2012)表明,格陵兰降雪的减少主要是由于1989 - 2009年期间降水阶段的变化(降雪至雨)引起的,而总降水仍然在很大程度上恒定。dou等。(2019)发现,融化季节液体沉淀的增加是北极海冰融化的关键因素。详细了解降雪到降雨变化背后的过程也将有助于更准确地评估对水文学/径流,永久冻结,生态系统,海冰静修和冰川融化的影响(Bintanja,2018年)和链接的社会生态系统(McCrystall等人,20221年)。
摘要本研究使用年龄结构的人群模型和一类孕妇研究了温度和降雨对疟疾传播动态的影响。已经分析了平衡溶液,并进行了数值模拟。结果表明,温度和降雨量的疟疾感染率显着很高(23。53 0 C - 39。 80 0 c)和(14。 82 mm -38。 分别为44毫米)。 结果表明,受影响最大的人群是最高五岁的儿童和孕妇,而移植传播的速度降低会增加没有疟疾感染的儿童的数量。 因此,这项工作建议人类意识到温度,降雨量及其相应疟疾传播的相应范围的变化,以便他们采取预防措施。 关键字:年龄结构;孕妇;温度和降雨;疟疾动力学;53 0 C - 39。80 0 c)和(14。82 mm -38。分别为44毫米)。结果表明,受影响最大的人群是最高五岁的儿童和孕妇,而移植传播的速度降低会增加没有疟疾感染的儿童的数量。因此,这项工作建议人类意识到温度,降雨量及其相应疟疾传播的相应范围的变化,以便他们采取预防措施。关键字:年龄结构;孕妇;温度和降雨;疟疾动力学;
摘要这项研究探讨了马来西亚气候下降雨与温度曲线之间的复杂标量在功能之间的关系。采用高级统计分析,我们研究了这些关键气候变量之间的时间动态依赖性。通过采用跨越显着的时间范围的全面数据集,我们旨在阐明温度随时间的变化如何影响马来西亚气候的降雨模式。为了实现这一目标,我们采用功能数据分析(FDA)来将温度作为标量形成功能和降雨。这种方法有效地捕获了这些环境变量之间的复杂关系。具体来说,我们使用FDA中的傅立叶基函数来捕获数据中固有的周期性模式。这些功能特别擅长建模温度波动的周期性,这对于了解它们对降雨的影响至关重要。相关性和交叉相关函数的轮廓图揭示了温度与降雨之间的关系。我们的功能线性模型显示了温度与降雨之间的强正线性相关性,表明温度显着影响降雨模式。了解这些复杂的关系对于增强我们的预测能力和为该地区的气候适应和缓解制定有效的策略至关重要。这些发现为更广泛的气候学领域贡献了宝贵的见解,并对马来西亚的可持续资源管理和环境规划产生了影响。关键字:功能数据分析;标量函数;马来西亚气候
索诺玛水是水资源管理和气候弹性评估和计划的区域领导者。为了通过理解,计划和解决未来气候影响,为索诺玛水提供支持,ESA开发了一个数据库,该数据库是针对水资源管理应用程序常用的一系列关键变量的未来降雨估算。数据库域涵盖索诺玛县,俄罗斯河流域和上伊尔河上的流域,如图1所示。数据库包含空间和时间序列数据,反映了特定时间范围,排放场景和气候模型集成统计的预计降雨量的估计。本报告记录了用于开发数据库的数据,方法,结果和假设。将在单独的repo1i中提供有关如何在水资源管理中使用数据库作为索诺玛水的指南。
为了评估这些非物理事件的影响,旨在识别线性特征的过滤器,该线性特征是单个网格盒宽且与网格对齐的过滤器,并应用于降雨小时场。网格框值高于给定阈值(根据非物理特征的目视检查确定)被认为是错误的,并用缺失的数据代替了此灵敏度分析(稍后,请参见替代方案)。应该强调的是,确定降雨的极端特性是困难的,并且存在明显的不确定性,并且所选方法可以对非物理事件的诊断影响产生重大影响。因此,下面报告的值仅应被视为对问题的规模起诉,并且单个应用和方法可能会受到更大或更少的程度的影响。
图1:澳大利亚季节性降雨区。中位年降雨量(基于1900年至1999年的100年期)和季节性降雨的发生(与5月至10月相比,11月至4月的降雨量比中位降雨的比率)用于识别六个主要区域;夏季主导(潮湿的夏季,干燥的冬季),夏季(潮湿的夏季,低冬季降雨),统一(无晴朗的季节性),冬季(潮湿的冬季,低夏降雨),冬季占主导地位(潮湿的冬季,干燥的夏季)和干旱(低降雨)。来源:气象局http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp。2图2:1900年至2022年之间的新南威尔士州和澳大利亚首都地区的年降雨量。1961 - 1990年之间的平均降雨量为556.2mm。资料来源:气象局; http://www.bom.gov.au/climate/ 3图3:2000年至2019年之间的4月至10月的降雨十分位于1900年至2019年的整个降雨记录。注意最近的湿年(2020,2021,2022)不包括在内。来源:http://www.bom.gov.au/state-of-the-climate/。4图4:高分辨率(季节性 - 年分辨率)氢气候(降雨和/或温度)代理的位置。来源:Steiger等。24 5图5:在1000至2000 CE之间的每105年期间干燥,中性和潮湿年的比例。来源:Flack等。21 6图6:天气尺度天气的示意图和气候变化模式,对于新南威尔士州的降雨至关重要。来源:气象局。来源:https://takvera.blogspot.com/2014/01/warming-may-spike-when-pacific-decadal.html。8图8:过去2000年的IPO时间赛。a)扩展法律圆顶IPO重建和Buckley等。43 IPO重建,从1300年至2011年,b)过去2000年。 黑线是使用Folland索引的观察性IPO。 来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。 11图10:ENSO与澳大利亚降雨的关系。 每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。 仅显示95%水平的相关性。 数据周期:1889年至2006年。 来源:Risbey等5。 12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。 来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。 来源:气象局。 16图13:南环模式。 a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。 使用ERE5 87重新分析表面风(10m)创建的数字。 来源:Hendon等。43 IPO重建,从1300年至2011年,b)过去2000年。黑线是使用Folland索引的观察性IPO。来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。11图10:ENSO与澳大利亚降雨的关系。每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。仅显示95%水平的相关性。数据周期:1889年至2006年。来源:Risbey等5。12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。来源:气象局。16图13:南环模式。a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。使用ERE5 87重新分析表面风(10m)创建的数字。来源:Hendon等。赤道膨胀和中纬度西风带(由蓝色和红色箭头指示)的极点收缩的变异性以SAM为特征。b)季节性马歇尔山姆指数。来源:https://climatedataguide.ucar.edu/climate-data/marshall-southern-nular-annular-mode-mode-sam-index-station-17图14:SAM对澳大利亚每日降雨的影响。每个澳大利亚季节正面和负SAM(SAM+减去SAM-)之间的每日降雨(阴影)和850-HPA风(向量)差异。在每个面板的右上列出了SAM的正和负阶段的天数。仅在复合每日异常与95%水平的零差异显着不同的情况下提供阴影。89 18图15:使用Marshall指数,代表代表印度洋偶极子的ElniñoSouthern振荡和偶极模式指数(DMI)的Marshall指数,海洋Niño指数(ONICNIño指数(ONI))的季节平均指数。年对应于十二月。*注意MAM图是年 + 1(例如MAM 2009代表2010年3月至5月的时期)。改编自Udy等人。82 21图16:东海岸旋风子类型。左 - 旋风簇轨道。右 - 第75个百分点降雨。来源:Gray等。115 22
摘要。2021年7月在欧洲中部的特殊浮游受到比利时的影响。由于降雨是此事件的触发因素,因此本研究的目的是根据两种观察数据来表征2021年7月13日至16日在比利时的降雨量。首先,已经汇总了比利时天气和水力服务所记录的高质量雨量测量表记录的观察结果并检查了质量。第二,已经证明,基于雷达的降雨产物可以在比利时高空间和时间分辨率下可靠地估计定量沉淀。这里对这些数据进行了几项分析,以描述事件期间降雨的空间和时间分布。这些分析表明,事件期间的降雨积累在大型方面达到了前所未有的水平。从1到3 d的持续时间累积显着超过了几个地方的200年回报水平,在200年的回报水平上,在Vesdre盆地的本地2和3 d值超过200年的回报水平。需要尽可能记录这样的破坏事件,并且必须与科学界共享可用的观察数据,以进行水文,城市规划方面的进一步研究,更普遍地,在所有多学科研究中,旨在识别和理解导致这种灾难的因素。因此,相应的降雨数据是在补充剂中自由提供的(Journée等,2023; Gouden-Hoofdt等,2023)。
“尽管频率分析将继续用于设计洪水估算和模型对历史数据的校准,但气候变化会影响一系列以高度非线性方式影响洪水量的洪水驱动因素。因此,很难在不参考气候变化影响洪水量的因果过程的情况下直接调整洪水信息。”
摘要。2021年7月在欧洲中部的特殊浮游受到比利时的影响。由于降雨是此事件的触发因素,因此本研究的目的是根据两种观察数据来表征2021年7月13日至16日在比利时的降雨量。首先,已经汇总了比利时天气和水力服务所记录的高质量雨量测量表记录的观察结果并检查了质量。第二,已经证明,基于雷达的降雨产物可以在比利时高空间和时间分辨率下可靠地估计定量沉淀。这里对这些数据进行了几项分析,以描述事件期间降雨的空间和时间分布。这些分析表明,事件期间的降雨积累在大型方面达到了前所未有的水平。从1到3 d的持续时间累积显着超过了几个地方的200年回报水平,在200年的回报水平上,在Vesdre盆地的本地2和3 d值超过200年的回报水平。需要尽可能记录这样的破坏事件,并且必须与科学界共享可用的观察数据,以进行水文,城市规划方面的进一步研究,更普遍地,在所有多学科研究中,旨在识别和理解导致这种灾难的因素。因此,相应的降雨数据是在补充剂中自由提供的(Journée等,2023; Gouden-Hoofdt等,2023)。