图表列表 图 1.1:限制性酶的发现时间表及一般历史里程碑……………………………………………………………………………………………………… 2 图 1.2:中心法则图…………………………………………………………………… 4 图 1.3:不同类型的限制性酶;ZFN 和 TALEN 序列特异性分别与特定三联体或有限特定 bp 序列有关。粉红色高亮表示所示限制性酶或内切酶的结合位点。粗线表示切割位点………………………………………………………… 5 图 1.4:CRISPR-Cas9 系统的功能组件(Bortesi, L. 和 Fischer, R.,2014 年)。面板 (a) 显示了 Cas9 正常发挥功能所必需的各个 RNA 组件。图 (b) 显示 RNA 成分连接在一起形成 sgRNA 序列。……………………………………………………………………...… 8 图 3.1:设计引物的 Lambda DNA 凝胶电泳(目标大小 1000bp)。孔 1 显示大小标准(以“M 表示),孔 2 和 3 显示成功 PCR …………………………………………………………………………………..... 20 图 3.2:基于 Origene 的 CRISPR-Cas9 方案的凝胶电泳。含有梯状物的孔标记为“L”。含有未切割的 PCR 产物储备孔标记为“P”。标签 2/3、1X 和 4X 表示反应中使用的 DNA 浓度。标准浓度为 1X。孔 2-4、6-8、10-12、14-16、18 和 19 显示 CRISPR/Cas9 反应产物 .……………………………….…….….… 21 图 3.3:基于 Origene 的改良版 CRISPR-Cas9 方案的凝胶电泳图,其中模板 DNA 浓度和 Cas9 试剂浓度均增加。含有梯度的孔标记为“L”。含有未切割的 PCR 产物原料孔标记为“P”。孔 3-6、7、8、10-13、14 和 15 含有 CRISPR/Cas9 反应产物。所有反应均含有 10uL 模板 DNA .…………………………………………………..……………………..……...…. 22 图 3.4:基于 IDT 的改良版 CRISPR-Cas9 方案的凝胶电泳图。含有梯状物的孔标有“L”。含有未切割的 PCR 原液产物的孔标有“P”。孔 2 不含任何产物。孔 3-6、7-10 和 11-14 含有 CRISPR/Cas9 反应产物。所有反应均含有 tracrRNA。孔 11-14 含有 3 倍量(uL)的模板 DNA……… ...
这一现象最早是在 20 世纪 50 年代初 Salvador Luria 和 Giuseppe Bertani 实验室的工作中发现的。他们发现,一种噬菌体 λ 可以在大肠杆菌的一种菌株(例如大肠杆菌 C )中生长良好,但当在另一种菌株(例如大肠杆菌 K )中生长时,其产量会大幅下降。大肠杆菌 K 宿主细胞(称为限制性宿主)似乎能够降低噬菌体 λ 的生物活性。限制性酶 = 限制性内切酶
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
2.自 1980 年以来,理事会定期举行特别会议,审查贸易体系的发展情况。最初,此类会议仅涉及 1979 年《关于通知、磋商、争端解决和监督的谅解》(BISD 26S/210)。他们主要关注审查谅解第 2 和第 3 段(涉及贸易措施的通知)以及第 24 段(涉及对贸易体系发展的监督)所涵盖的发展情况。1983 年 7 月,理事会同意扩大其特别会议的范围,包括监测 1982 年《部长宣言》(BISD 29S/11)第 7(i) 段。理事会还同意,此类特别会议最好每年举行两次。在第 7(i) 款中,缔约方承诺“坚决努力确保贸易政策和措施符合关贸总协定的原则和国家贸易政策规则以及提出立法建议;并避免采取或维持任何与关贸总协定不一致的措施,并坚决努力避免采取限制或扭曲国际贸易的措施”。
即便如此,在计算机被广泛使用之前,生物学家偶尔也会忽略一个酶位点,从而对后续实验造成不幸的后果。当然,有许多程序可以将 DNA 序列转换成限制性图谱。然而,限制性图谱通常是在确定 DNA 序列之前构建的。这些图谱有时是确定 DNA 序列的准备工作,但它们的构建也可能是其他实验的第一步。请参阅 [6] 的综述。许多生物学家目前参与基因组分析。基因组是指生物体的所有 DNA。直到最近,最常分析的是长度为 100 到 10,000 个字母的小片段。为了组织基因组 DNA,一种方法是制作易于管理的小片段的限制性图谱,并利用这些图谱来确定片段的重叠,从而构建一个包含大部分基因组的图谱。Kohara el a/。 (41 已成功使用此策略绘制了 E. Cofi 的整个基因组图谱。Lander 和 Waterman 151 对这一过程进行了数学分析,他们的结论之一是图谱应尽可能详细,且区域应尽可能长。在构建限制性图谱时,会出现一些有趣而困难的数学问题。限制性图谱绘制有几种实验方法,每种方法都有其优点和缺点。在这里,我们将关注绘制两种限制性酶位点位置的问题。在实践中,构建这种图谱的一种方法是通过测量两种酶分别单独消化 DNA 以及然后两种酶一起消化 DNA 的片段长度(而不是顺序)。根据片段长度数据确定切口位置的问题称为双消化问题 (DDP)。在 Fitch 等人的论文中,图谱构建问题是通过集合分割问题来解决的:如何选择双消化片段的子集,其长度之和始终等于单消化片段长度。在 Goldstein 和 Waterman [3] 的论文中,他们通过旅行商问题的启发式算法——随机退火来解决该问题。DDP 限制映射有多难?Goldstein 和 Waterman 131 给出了一个答案,他们证明它是 NP 难的。因此必须使用启发式方法。虽然近似解似乎很容易获得,就像在旅行商问题的许多变体中一样,但这里的情况更成问题。分子生物学家希望找到正确的图谱,即与未知 DNA 序列一致的图谱。因此,通过某个任意目标函数衡量的“接近”最优的图谱可能远远不能被生物学家接受。映射算法应该生成尽可能小的图谱集,这些图谱可靠地包含生物学上正确的图谱。