摘要 近期围绕人工智能 (AI) 的夸大其词影响了我们正确考虑这项技术的持久教育影响的能力。本文概述了一些关键问题和担忧,这些问题和担忧需要在未来围绕 AI 的教育讨论中更加突出。其中包括:(i) 教育过程和实践的统计建模和计算方式有限;(ii) 人工智能技术有可能对少数族裔学生造成社会危害;(iii) 重组教育以使其更“机器可读”而造成的损失;以及 (iv) 数据密集型和设备密集型人工智能的生态和环境成本。本文最后呼吁放慢并重新调整当前围绕人工智能和教育的讨论——更多地关注权力、抵抗和重新构想教育人工智能的可能性问题,使其更加公平和有利于教育。
研究诚信 我们的使命是通过研究和分析帮助改善政策和决策,这一使命通过我们的核心价值观——质量和客观性以及我们对最高诚信和道德行为的坚定承诺得以实现。为确保我们的研究和分析严谨、客观和不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策避免出现和实际的财务和其他利益冲突;并通过我们致力于公开发表研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/research-integrity。
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可证进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 https://creativecommons.org/licenses/by/4.0/。
卵巢癌(OC)是第三大常见的妇科癌症,仅出现率约为全球308,069例(2020年),其生存率可怕。要透视它,OC的死亡率比乳腺癌高三倍,预计到2040年仅显着增加。如此高率的主要原因是,当对化学疗法的耐药性很高时,OC的身体症状只能在疾病的晚期阶段检测到,而实际上确实对化学疗法反应的患者中有80%的患者随后对预后较差。这强调了开发新的有效疗法以应对先进的OC以提高预后和患者生存的迫切需求。在这个方向上的一个重大进展是结合免疫治疗方法的出现以提高CD8 + T细胞功能以应对OC。从这个角度来看,我们讨论了对治疗高级OC的某些联合疗法的当前状态,它们的局限性以及对更安全,更有效反应的潜在方法。
研究诚信 我们的使命是通过研究和分析帮助改善政策和决策,这一使命通过我们的核心价值观——质量和客观性以及我们对最高诚信和道德行为的坚定承诺得以实现。为确保我们的研究和分析严谨、客观和不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策避免出现和实际的财务和其他利益冲突;并通过我们致力于公开发表研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/research-integrity。
阿尔茨海默氏病(AD)是一种进行性神经退行性疾病,导致记忆,注意力和语言下降。当前的AD诊断方法缺乏客观性和非侵入性。虽然电解图(EEG)对AD研究有希望,但传统的脑电图分析方法已证明并不令人满意。非线性动力学方法在评估大脑的复杂性质方面被认为更有效。从这些考虑开始,本研究提出了一种基于熵的算法,该算法利用多尺度模糊熵(MFE)作为一种有希望的有效的AD诊断方法。表现出显着的歧视能力。值得注意的是,在结果中观察到趋势反演:与健康对照相比,AD受试者显示出慢速频段的复杂性值更高,而在快速频段中发现了相反的情况。这些发现强调了MFE在有效区分AD患者和健康个体的潜力,这标志着更加客观和可靠的AD诊断策略的重大进展。
癌症是一种复杂而多方面的疾病,影响了全球数百万的人。癌症治疗和预防最有希望的进步之一是mRNA癌症疫苗的发展[1]。这些疫苗利用免疫系统靶向和消除癌细胞的能力,提供革命性的癌症治疗方法[2]。mRNA癌症疫苗利用MES SENGER RNA(mRNA)分子的独特特性来指示人体的免疫系统识别和攻击癌细胞。与传统的疫苗不同,该疫苗将病毒或细菌的弱或灭活形式的形式引入体内,mRNA疫苗为特定的癌症相关蛋白或抗原提供了遗传代码[3]。当将mRNA引入体内时,细胞会采用它,然后使用遗传指令产生靶抗原[4]。该抗原在细胞表面呈现,其中免疫系统将其识别为异物。因此,免疫系统对抗原进行反应,以识别和消除将来显示出相同抗原的任何癌细胞。这种目标方法增强了人体对抗癌症的能力,并降低了与常规癌症治疗相关的副作用的风险[5,6]。
疾病。葡萄糖稳态异常在典型症状发作之前就已经存在。 基于实验室的测试,例如口服葡萄糖耐量测试(OGTT)和糖化血红蛋白(HBA 1C),已用于分期T1D,并评估进展到临床T1D的风险。 连续的葡萄糖监测(CGM)可以检测早期血糖效果,因此可用于监测症状前,胰岛自动抗体阳性,处于危险的个体中的代谢恶化。 对这些儿童的早期识别不仅可以降低出现糖尿病性酮症酸中毒(DKA)的风险,而且还确定了预防试验的宗旨,旨在预防或延迟临床T1D的发展。 在这里,我们描述了使用OGTT,HBA 1C,果糖胺和糖化白蛋白的当前状态。 使用幻觉病例,我们介绍了使用CGM的临床经验,并主张提高这种糖尿病技术的作用,以监测症状前T1D儿童的代谢恶化和疾病进展。葡萄糖稳态异常在典型症状发作之前就已经存在。基于实验室的测试,例如口服葡萄糖耐量测试(OGTT)和糖化血红蛋白(HBA 1C),已用于分期T1D,并评估进展到临床T1D的风险。连续的葡萄糖监测(CGM)可以检测早期血糖效果,因此可用于监测症状前,胰岛自动抗体阳性,处于危险的个体中的代谢恶化。对这些儿童的早期识别不仅可以降低出现糖尿病性酮症酸中毒(DKA)的风险,而且还确定了预防试验的宗旨,旨在预防或延迟临床T1D的发展。在这里,我们描述了使用OGTT,HBA 1C,果糖胺和糖化白蛋白的当前状态。使用幻觉病例,我们介绍了使用CGM的临床经验,并主张提高这种糖尿病技术的作用,以监测症状前T1D儿童的代谢恶化和疾病进展。
传统 CMOS 逻辑的能效正在快速接近实际极限,而这最终源于基本的物理考虑。根据 IRDS 路线图,到 2030 年左右,最小典型逻辑信号能量预计将降至最低,约为 0.2 fJ (1.25 keV)。这将加剧可实现的设备密度(随着行业转向 3D VLSI 技术,该技术可以在一个制造过程中集成多个“层”有源设备,设备密度将继续增加)与芯片封装内功率耗散密度保持可控的需求之间的矛盾。实际上,这些限制将导致实际芯片设计中潜在可用的设备数量资源越来越未得到充分利用,加剧了目前已经存在的“暗硅”问题。
14.30h TER 总结 Dr Katherine MORSE JHU/APL Dr Curtis BLAIS MOVES 研究所,海军研究生院 15.00h 研讨会结束