微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
保护效果可能是必需的,但维护也很重要。另外,在航空和电气系统中,依赖于电机的系统可能会过时,因此将与新的电气系统一起使用。电力管理系统是有关能源完善和大规模开船术语的相关资料,在这些系统开发过程中说明了后续的工作。这些集中在新结构或行动神经架构的基础上的电驱动系统概念。压电共振研究系统是压电动作神经元的基础。作为一种最新的替代品,陶瓷压电陶瓷具有令人兴奋的结构和频率。 Lorsqu'elle 对应于结构的自然频率,振动的振幅增强共振现象,générant des niveaux élevés
提供有效的保护,但需要大量的电力或维护。此外,在更多电动飞机的背景下,依赖热力发动机的系统可能会过时,从而为新的电气系统开辟道路。机电除霜系统最近已被证明在能源消耗和车载质量方面具有相关性,这解释了本文继续开发该系统的工作。本论文重点研究基于新型执行器结构或架构的谐振机电除霜系统的设计。所研究的谐振机电除霜系统基于压电执行器。由交流电供电,压电陶瓷通过以给定频率激励结构来振动。当它对应于结构的固有频率之一时,由于共振现象,振动幅度会增加,产生高电平
与传统技术相比,热除冰和融雪方法在控制交通基础设施表面冬季状况方面具有多种优势。这些包括自动控制安全的表面条件、避免化学物质及其对环境的影响以及延长基础设施的使用寿命。水力传热系统可以利用夏季收集的太阳能和地热交换的季节性热能储存。将这些可再生资源与能源储存结合起来可以节省一次能源。2021 年 6 月,国际能源署 (IEA) 启动了一个项目,旨在利用地面热能源为交通基础设施的表面除冰。本文首次概述了项目目标和方法。© 2022 作者。由 ELSEVIER BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由交通研究领域 (TRA) 会议科学委员会负责同行评审 关键词:除冰;融雪系统;地源;基础设施
摘要 —近年来,全球风力发电机组的装机容量快速增长,然而高海拔或高纬度地区的风力发电机组容易遭受冰冻灾害,严重造成风力发电机叶片结冰,影响其气动性能。目前已有大量文献提出了多种风力发电机防冰系统(IPS)方法,但目前的防除冰技术大多只注重防冰效果,而忽视了防除冰效率。因此,本文对现有的风力发电机防除冰技术的原理、应用及相关研究进行了综述,分为被动防除冰技术与主动防除冰技术。此外,本文还指出,机械除冰方法在风力发电机叶片上具有广阔的发展前景和巨大的利用潜力,主要是在航空航天领域应用的电脉冲和气动除冰技术。本文还介绍了这两种技术的优越性以及进一步的研究方向,旨在为风力发电机防冰提供有价值的参考。
本报告的内容反映了 APS Aviation Inc. 的观点,不一定代表加拿大交通部交通发展中心的官方观点或意见。交通发展中心不认可产品或制造商。贸易或制造商的名称出现在本报告中只是因为它们对其目标至关重要。文件来源和批准记录 编制人:___________________________________________________ Marco Ruggi,工程师,工商管理硕士日期 项目负责人 审核人:___________________________________________________ John D'Avirro,工程师,PBDM 日期 项目经理 批准人:** ___________________________________________________ Jack Rigley,专业工程师日期 通信工程副总裁 ADGA 集团 一份法语报告出现在材料表的前面。
本报告的内容反映了 APS Aviation Inc. 的观点,不一定代表加拿大交通部交通发展中心的官方观点或意见。交通发展中心不认可产品或制造商。贸易或制造商的名称出现在本报告中只是因为它们对其目标至关重要。文件来源和批准记录 编制人:___________________________________________________ Marco Ruggi,工程师,工商管理硕士日期 项目负责人 审核人:___________________________________________________ John D’Avirro,工程师,PBDM 日期 项目经理 批准人:** ___________________________________________________ Jack Rigley,P. 工程师。日期 通信工程副总裁 ADGA 集团 一份法语报告出现在材料表的前面。
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。它们可以下载和/或打印用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
