1。每次我们开车,打开灯,使用热量或交流电,烹饪,购买任何事情,做任何事情时 - 我们正在使用能量来做一些事情,使我们的生活更轻松,更舒适。我们使用能源来收集原材料,将其运送到工厂,建造设备,购买并使用它们。在早期的人类历史上,能量来自木材和个人劳动,这两个都不会将任何净CO 2添加到大气中。但是,随着工业革命的发展,我们使用了第一煤炭,并最终以越来越多的石油和天然气使用了石油和天然气。所有化石燃料都是通过从空气中的C,H,O化合物中提取CO 2来生长的地球生长后制成的,并将其捕获在表面下数百万年。高压挤出了氧原子,留下了碳和氢(化石燃料)。一旦我们燃烧它们,它们的所有碳原子最终都会随着人类产生的CO 2气体而最终散布在整个大气中,以填充所有可用的体积。
脑肿瘤的护理标准是最大的安全手术切除。神经活动增强了外科医生实现这一目标的能力,但随着手术的发展而失去有效性。此外,胶质瘤通常与周围健康的脑组织没有区别。术中磁共振成像(IMRI)和超声(IUS)有助于可视化肿瘤和大脑的转移。ius更快,更容易纳入手术工作流程,但比IMRI在肿瘤和健康组织之间的对比度更低。随着渴望数据的人工智能算法在医学图像分析中的成功,共享经过良好策划数据的好处不能被夸大。为此,我们提供了手术治疗的脑肿瘤的最大公开MRI和IUS数据库,包括神经胶质瘤(n = 92),转移(n = 11)等(n = 11)。该系列包含369个术前MRI系列,320 3D IUS系列,301个IMRI系列和356个从单个机构连续114例患者收集的分段。该数据库有望帮助大脑转移和图像分析研究以及解释IUS和IMRI的神经外科培训。
通讯员 原子(和分子)光谱中充满了信息,但遗憾的是,由于光谱线的精细结构通常无法解析,因此有些信息无法获取。因此,光谱学家不断努力提高光谱分辨率。然而,光谱分辨率的限制并不总是工具性的,而可能是原子组合所固有的。例如,由于气体原子的热运动,它们在光源传播方向上呈现出一系列速度。现在,如果 vo 是将原子从(尖锐)较低能态提升到(尖锐)较高能态所需的辐射频率(当原子相对于光源静止时),那么远离光源的原子每秒“看到”的波数(即频率)小于 vo。当然,远离光源的原子必须吸收它认为具有频率 vo 的辐射,因此相对于静止光源,该频率必须超过 vo。原子速度在源方向上的麦克斯韦-波尔兹曼分布确保了吸收频率的分布,即使每个原子都有尖锐的能级,即所谓的多普勒增宽。如果只选择相对于源的速度较窄的原子,使它们都以相同的频率吸收,则可以克服多普勒增宽。使用了几种速度选择技术,包括原子束和激光饱和光谱(参见《自然》,235,127;1972 年)。现在,两个研究小组分别描述了另一种处理多普勒增宽的优雅方法(Biraben、Cagnac 和 Grynberg,《物理评论快报》,23,643;1974 年;Levenson 和 Bloembergen,同上,645)。这些作者使用的技术的本质非常简单。这两个研究小组都研究了通常被禁止的 5S