有效使用它们的能力(Beckie,2020)。因此,要解决问题并制定可持续有效的杂草管理策略,我们必须了解除草剂耐药性的产生方式。我们知道,杂草可以通过更改除草剂(靶位部位耐药性或TSR)靶向的蛋白质,或避免,修改或排毒除草剂本身(非target位点耐药性或NTSR)来进化除草剂(Gaines等人。2020)。也很明显,这两种机制不是相互排斥的,许多种群都表现出两种类型的抗药性(Comont等人2020)。对于几种杂草物种,我们对TSR具有良好的分子水平理解。研究TSR是被损坏的东西,除草剂的功能被设计为中断的蛋白质是已知的。已经确定了目标蛋白质中突变位点的位置,这些变化的频率以及产生的变化如何改变除草剂和靶标之间的相互作用(在Gaines等人中进行了审查。2020)。这些研究使我们对为什么除草剂不再抑制蛋白质功能有分子级的理解。,但TSR机制并不总是完全解释所有杂草如何生存。这强调了NTSR机械主义和数据的重要性,这表明NTSR非常广泛(Powles&Yu,2010年综述)。ntsr涵盖了允许植物在蛋白质靶标的变化以外的所有方法:包括摄取除草剂分子的摄取,转运和排毒。2018)。为了使未来的杂草管理策略有最佳的工作机会,他们必须考虑NTSR,特别是因为NTSR可以从不同的作用方式赋予对除草剂的抵抗,从而扩展到尚未发明的除草剂。因此,要确定基本的修改,必须考虑所有这些过程中涉及的所有蛋白质。研究人员已经通过各种途径进行了“针中的HAYSTACK”搜索,包括比较对除草剂敏感的蛋白质组和/或转录组与耐除草剂的植物。这种整体方法与损坏的系统进行了比较,在识别可能支持NTSR的潜在基因方面效果很好。但是这些清单很长,很明显,所有耐除草剂群体都不具有单一的通用“分子填充物”(Tétard-Jones等人。因此,这些方法仅揭示了基因型和表型之间的相关性,但不能建立因果关系。如果除草剂耐药性是一台可能导致问题的潜在零件列表的破碎机器,我们将以两种方式处理此列表:要么替换每个零件以查看是否解决了问题,要么在工作机器中打破同一零件,以查看问题是否可以重复。
摘要:粮食不安全一直是全球面临的威胁,迫使研究人员开发即使在变化的气候条件下也能提高产量的作物。水稻是一种重要的主食和战略作物,有助于确保全球经济稳定、粮食和营养安全。它满足了世界各地人民 20% 的卡路里需求。最近,由于气候引起的水资源短缺以及人力资源、耕地等资源的减少,水稻种植和研究面临着前所未有的困难。在这方面,直播水稻 (DSR) 作为一种资源节约技术,作为传统移栽的潜在替代方案,越来越受欢迎,因为它可以减少投入需求、减少甲烷和二氧化碳排放、增强对气候变化的适应性并增加经济回报。DSR 中的杂草威胁在很大程度上阻碍了其取得丰硕成果。 DSR 高度依赖除草剂来控制杂草,因为人工除草和其他耕作方式需要大量劳动力,而这又会遭遇作物损伤(非选择性除草剂)和抗性杂草(选择性除草剂)的挫折。耐除草剂 (HT) 水稻可能是 DSR 杂草管理的有效长期解决方案。在此背景下,已经开发了三种 HT 水稻系统,即咪唑啉酮、草甘膦和草铵膦。本评论深入了解了 DSR 对 HT 水稻的需求、其生产系统、局限性以及正确管理水稻杂草的管理指南。
通过局部序列多样化和同时施加选择压力的合成定向进化是一种很有前途的方法,可用于产生影响不同物种感兴趣性状的新的有益等位基因;然而,这种技术很少应用于植物。在这里,我们设计、构建并测试了 T7 RNA 聚合酶 (RNAP) 和脱氨酶的嵌合融合物,以实现感兴趣的目标序列的局部序列多样化。我们在本氏烟瞬时测定中测试了我们的 T7 RNAP - DNA 碱基编辑器,以靶向在 T7 启动子控制下表达 GFP 的转基因,并观察到 C 到 T 的转换。然后,我们靶向已稳定整合到水稻基因组中的 T7 启动子驱动的乙酰乳酸合酶序列并产生 C 到 T 和 G 到 A 的转换。我们利用除草剂处理作为乙酰乳酸合酶序列进化的选择压力,导致除草剂反应残基的富集。然后我们在转基因水稻植物中验证了这些除草剂反应区域。因此,我们的系统可用于基因功能的持续合成进化,以产生具有改进的除草剂抗性的变体。
磺酸盐(SUS)是一类除草剂,可通过抑制乙酰乳酸酶合酶(ALS)抑制植物中分支链氨基酸的生物合成[1,2]。这些除草剂,例如Tribenur-甲基(TBM)和Amidosulfuron,被广泛用于种植谷物,草莓和葡萄[3]。另一方面,2型糖尿病(T2D)是一种复杂而慢性疾病,具有强大的遗传成分,环境因素和生活方式习惯。先前的研究表明,接触除草剂,尤其是SUS和T2D的发展之间可能存在关联。这些研究发现,通过其职业或使用这些除草剂使用的地区暴露于SUS的个人面临T2D的风险更高。但是,需要进一步的研究以充分了解除草剂可能有助于T2D发展并建立确定的因果关系的机制[4-6]。我们报告了三个使用SUS的农艺师案例,这些案例最多三十年并开发了T2D。这些人会定期使用这些除草剂作为工作职责的一部分。
多年来,惰性荧光染料罗丹明水示踪剂 (RWT) 一直广泛应用于淡水水生系统中,以量化大量水交换模式和作为水下除草剂运动的示踪剂。这种染料在水中溶解度高且可检测性强 (<0.01 μg/L),非常适合用于示踪工作。联邦指导方针将饮用水入口处的 RWT 水溶液浓度限制为 <10 μg/L。事实证明,低浓度的这种染料对水生生物和人类无害,而且价格相对便宜。自 1991 年以来,工程师研究与发展中心 (ERDC) 的研究人员一直使用 RWT 来模拟 12 个以上州的大型水动力系统中的水性除草剂应用。此类模拟通过将原位水交换过程与适当的除草剂选择和施用率联系起来,提高了除草剂处理的有效性。了解这些参数对于减少环境敏感环境以及饮用水和灌溉取水口周围的除草剂暴露至关重要。基于数据的水交换模式估计通常可以成功实现水下除草剂应用——既对目标植物有效,又对非目标植物的伤害有限。使用 RWT 染料模拟水下除草剂应用是实验和操作环境中重要的预测和实时工具。
建议在水箱混合物中使用多种有效的除草剂模式,以缓慢耐水性(Amaranthus tuberculatus)的耐药性演化,这可能会允许种植者延长当前除草剂的使用。在光系统II(PSII)和HPPD抑制剂之间已经报道了1个协同的除草剂相互作用,最常见于除草剂阿雷津加上术。1,2,3,4吡啶酸酯是6组PSII抑制剂 - 组氨酸215粘合剂,其结合位点与阿特拉津不同。对吡啶甲酯和HPPD抑制剂之间的相互作用进行了有限的研究。
除草剂对现代农业的严重威胁提高了人们对理解生化机制和进化过程的重要性的认识,这些过程解释了其在农业生态系统中的普遍性。与任何其他科学问题一样,命名法是正确描述和研究这种现象的关键。尽管已经研究了多年的除草剂耐药性,但对其生化机制的更深入了解以及对历史背景的认识,因此有必要更好地定义除草剂的耐药性和耐受性。实际上,诸如美国杂草科学学会和除草剂抵抗行动委员会等重要组织(WSSA 1998; https://hracglobal.com/herbicide-resi立场/确认 - 2023年12月15日访问)已提供了这些条款的定义:
乙酰乳酸合酶(ALS)或乙酰羟基酸合酶(AHAS)是分支链必需氨基酸丝线,Leucine,Leucine和Isopoilucine的生物合成途径中的第一个酶(1,2)。来自五个化学组的磺酰脲(SU),咪唑酮(IMI),三唑吡吡咪定(TP),嘧啶基 - 硫代苯甲酸盐(PTB)和磺酰基 - 氨基氨基苯甲酸 - 氨基苯甲基 - 苯甲酸 - 苯二唑诺酮(SCT)抑制Als Amniv的序列化的除草剂。 乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。 因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。 但是,耐药的杂草很快出现了,即 在1987年在美国确定的抗性刺芽生菜(5)。 从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。 研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。 基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。除草剂。乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。但是,耐药的杂草很快出现了,即在1987年在美国确定的抗性刺芽生菜(5)。从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。网站http://www.weedscience.org呈现了根据每个AAS对ALS抑制剂获得的抗性除草剂杂草获得的阻力模式的更新记录[1]。
关于使用防暴剂和除草剂的指导 参考:见附件 B 1. 目的。根据 (IAW) 参考 (b) 和 (d),本指示为以下人员提供指导:a. 作战指挥官 (CCDR) 使用和处理防暴剂 (RCA) 和除草剂的方法。b. 各军种首长对 CCDR 使用和处理 RCA 和除草剂的计划和要求的支持。2. 取代/取消。参谋长联席会议主席指令 (CJCSI) 3110.07D,2011 年 1 月 31 日,“关于使用防暴剂和除草剂的指导”,特此取代。3. 适用性。本指示适用于作战司令部 (CCMD)、军种、国防机构和联合参谋部。4. 政策 a.美国致力于遵守国际军备控制协议,以防止大规模杀伤性武器 (WMD) 扩散到国家、非国家行为者和恐怖分子手中。b. 美国将仅根据国际法(参考文献 (a) 和 (b))和国内指导(尤其是参考文献 (c)、(d)、(e)、(f) 和 (g))使用和处理 RCA 和除草剂。
1. 在美国水域排放疏浚或填充材料和/或排放建筑物或工程在可航行水域或影响可航行水域,与广播叶面施用除草剂有关,这些除草剂已获得美国环境保护署 (USEPA) 批准用于湿地,已获得加利福尼亚州农药管理部门 (CDPR) 批准用于加利福尼亚州,亚利桑那州 AZDA 批准用于亚利桑那州。在任何支持受威胁和/或濒危物种的地区使用除草剂应符合美国环境保护署农药计划办公室、濒危物种保护计划县公告的规定。为了减少对使用“完全受侵染的林地”附近区域的候鸟的潜在影响,任何日历年的 3 月 15 日至 9 月 15 日期间不得使用飞机(例如直升机)施用除草剂。
