1 MCA系1尼赫鲁工程与研究中心,印度邦帕迪摘要:碳机器人激光weed脚是大规模的特种作物的精确杂草管理的显着改善。 此高级工具使用现代相机和技术来快速将杂草与农作物区分开。 无论一天中的天气或时间如何,它都会使用各种强烈的激光来专门瞄准和清除杂草。 Laserweeder通过提高农作物产量和降低农业成本,为现代农业提供了一种可持续的解决方案,解决了杂草管理的长期问题,该杂草管理困扰了农民数百年来。 手动除草,机器和除草剂影响了用于杂草管理的技术。 但是,每种方法都有自己的缺点。 尽管它们有效,但除草剂可能会对作物健康产生负面影响,并导致环境问题。 在使用机械除草时会造成损坏植物的危险,而且雇用手动工作人员仍然很困难且昂贵。 随着农业的进步,创造性解决方案的紧迫性越来越急切。 全球农民在控制杂草方面遇到了一个复杂的困难网络。 随着杂草与农作物的资源竞争,它们可以大大降低农业系统的整体生产率。 此外,耐除草剂杂草的增加导致常规化学处理效率的降低。 由于缺乏熟练的工人愿意从事手动除草,因此问题正在恶化。1 MCA系1尼赫鲁工程与研究中心,印度邦帕迪摘要:碳机器人激光weed脚是大规模的特种作物的精确杂草管理的显着改善。此高级工具使用现代相机和技术来快速将杂草与农作物区分开。无论一天中的天气或时间如何,它都会使用各种强烈的激光来专门瞄准和清除杂草。Laserweeder通过提高农作物产量和降低农业成本,为现代农业提供了一种可持续的解决方案,解决了杂草管理的长期问题,该杂草管理困扰了农民数百年来。手动除草,机器和除草剂影响了用于杂草管理的技术。但是,每种方法都有自己的缺点。尽管它们有效,但除草剂可能会对作物健康产生负面影响,并导致环境问题。在使用机械除草时会造成损坏植物的危险,而且雇用手动工作人员仍然很困难且昂贵。随着农业的进步,创造性解决方案的紧迫性越来越急切。全球农民在控制杂草方面遇到了一个复杂的困难网络。随着杂草与农作物的资源竞争,它们可以大大降低农业系统的整体生产率。此外,耐除草剂杂草的增加导致常规化学处理效率的降低。由于缺乏熟练的工人愿意从事手动除草,因此问题正在恶化。对于农民来说,平衡生产力,成本效益和环境影响仍然是一项具有挑战性的任务。引入碳机器人Laserweeder,这是一种旨在打击杂草的尖端设备。这种自主机器人以人工智能,复杂的摄像头和30台功能强大的激光效果非常精确地运行24/7。它在100多种不同类型的农作物中有效,可用于所有土壤类型,包括经过认证的有机田。提供了一种更环保的替代方案。索引术语 - 耐除草剂,精密杂草管理,可持续性,杂草控制技术
摘要:鉴于美国选择压力大、对原卟啉原氧化酶 (PPO) 除草剂敏感性降低的种群数量不断增加,长芒苋对原卟啉原氧化酶 (PPO) 抑制剂的抗性问题备受关注。我们评估了五种土壤施用除草剂对 2014 年和 2015 年在美国阿肯色州收集的长芒苋 (Amaranthus palmeri S. Wats.) 种群的影响。土壤施用的磺胺嘧啶、磺胺草醚和氟磺草胺使幼苗出苗率降低 91– 100%;然而,氟磺胺草醚和氧氟草醚对某些种群的功效降低 (63–90%)。靶位突变 (TSM) 是产生对 PPO 除草剂抗性的主要机制;因此,选择了六个对土壤施用的氟磺胺草醚表现出抗性的种群进行分子研究。对总共 81 株幸存者进行了所有已知抗性突变的基因分型。总共有 64% 和 36% 的幸存者分别带有单个和双重 TSM,其中 69% 的植物在 PPO2 的两个等位基因中都携带 TSM。来自两个种群的三株幸存者显示额外的 PPO2 拷贝,而所有其他幸存者都有一个拷贝。表达分析表明,在测试的抗性种群的所有植物中,PPO2 都上调了 3 到 6 倍。在 A. thaliana 中转基因过表达 WT-ApPPO2 和 dG210-Apppo2 证实了与野生型相比,对土壤施用的氟磺胺草醚的敏感性降低。总的来说,出苗前施用的 PPO 抑制剂在控制对叶面施用 PPO 除草剂产生抗性的种群方面仍然有效。从机制上讲,抗性 PPO2 表达的提高与功能性 TSM 的提高共同导致对土壤施用氟磺胺草醚的敏感性降低。
亲爱的Tangredi先生:国家玉米种植者协会(NCGA)感谢有机会对环境影响草案(EIS)(EIS)和植物风险评估草案发表评论,以确定通过基因工程为除草剂耐受性开发的不调节状态,并具有针对性特异性的糖尿病耐药性的耐药性促进杂化型杂化含量(MONBAIB MAIB MAIB MAIB SEED)(MON 877442)。成立于1957年,NCGA代表了36,000多个会费 - 在所有50个州支付了玉米种植者,以及通过其州的玉米院子组织贡献的300,000多名农民的利益。NCGA及其25个附属的国家协会共同努力,帮助保护和推动玉米种植者的利益。NCGA的成员支持使用基因工程为dicamba,Glufosinate,quizalofop和2,4-二氯苯氧基乙酸耐药性开发的玉米放松管制,MON87429。我们支持USDA/Aphis的结论,即MON87429不太可能比其得出的常规玉米品种构成更大的植物害虫风险。诸如抗昆虫耐药性和耐除草剂特征的新技术,以及实施强大的害虫管理计划,对于持续种植者的成功至关重要。有效地管理杂草及其对除草剂的抵抗是对玉米农民的持续挑战。这个新特征包与其他批准的特征堆叠在一起,可以提供农民综合杂草管理计划的关键组成部分,帮助他们在In the comprehensive draft EIS and Plant Pest Risk Assessment, USDA/APHIS acknowledges the “Approval of the petition would provide for cultivation of a stacked-trait HR corn variety resistant to 4 differing herbicide modes-of-action (MOA), and 5 herbicides, which could be of benefit to weed and HR [herbicide resistance] weed management in corn cropping system.”除草剂是种植者保护农作物免于损害杂草的必不可少的工具,从而影响产量,玉米质量和支持保护习惯。
D.基因编辑引入的性状的描述是除草剂抗性。通过使用碱基编辑器的特定碱基转变到O. sativa和T. aestivum的HPPD蛋白中产生的突变(Zong等,2018)。此外,由于对HPPD抑制除草剂的敏感性降低而获得了突变的HPPD酶。例如,获得了源自假单胞菌菌株A32的HPPD突变体G336W(Matringe等人。2005)。 活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。 另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。 2014; Siehl等。 2014)。 该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。 基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。 2018)。 尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。 靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。 将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。2005)。活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。2014; Siehl等。2014)。该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。2018)。尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。hppd是来自不同化学家族的除草剂的靶位部位,例如依氧唑(isoxaflutole和pyrasulfotole),吡唑酮(topramezone)和triketones(Mesotrione,Bicyclopyrone和tembotrione)(Lee等人)(Lee等人,1998年)。用这些除草剂治疗后,由于胡萝卜素合成的丧失,易感植物表现出漂白症状,并最终导致细胞膜的脂质过氧化。
天然生长素吲哚-3-乙酸 (IAA) 是植物生长发育诸多方面的关键调节剂。合成生长素除草剂(如 2,4-D)可通过诱导植物产生强烈的生长素信号反应来模拟 IAA 的作用。为了确定印度篱芥(Sisymbrium orientale)杂草种群对 2,4-D 的抗性机制,我们对 2,4-D 抗性 (R) 和易感 (S) 基因型进行了转录组分析,结果显示在生长素辅助受体 Aux/IAA2 (SoIAA2) 的降解子尾 (DT) 中存在 27 个核苷酸的框内缺失,从而删除了 9 个氨基酸。在重组自交系中,缺失等位基因与 2,4-D 抗性共分离。此外,在该物种的几个 2,4-D 抗性田间种群中也检测到了这种缺失。表达 SoIAA2 突变等位基因的拟南芥转基因株系对 2,4-D 和二甲苯具有抗性。IAA2-DT 缺失降低了天然和合成生长素与 TIR1 的体外结合,导致结合率降低和解离率增加。这种合成生长素除草剂抗性机制赋予了这种 Aux/IAA 辅助受体的 DT 区域在植物体内的功能,以发挥其在合成生长素结合动力学中的作用,并揭示了一种使用基因编辑生产合成生长素抗性作物的潜在生物技术方法。
2。2.0植物的技术和遗传操纵2.1)将DNA引入植物 - 间接方法(粒子轰炸,聚乙烯乙二醇,(PEG)电穿孔,碳化硅纤维纤维等)的方法和直接方法(硅核酸杆菌纤维纤维等)(Agrobacterium介导的基因Tranfer)2.2)植物变换 - 基本特征Vectoration-vectortation sos sos vectoration sos vectoration sos vectoration。2.3) - 遗传操纵在农业中的应用 - 使用有关除草剂耐药性,耐药性,抗病性,降低病毒疾病的影响,胁迫耐受性,提高作物产量和质量的案例研究,分子药物。2.4)生物伦理学 - 对转基因作物(抗生素耐药性基因,除草剂耐药性和“超级weed”基因污染物,大企业)和GM作物和产品法规的关注。
摘要:此摘要是我们目前正在进行的“创新森林计划”的研究项目的概述。该项目的目的是在种植后的第一年,尤其是机械除草剂而无需使用除草剂而自动化杨树种植园的传统手动任务。杨树林被认为是半结构化的环境,在该环境中,密集的冠层防止使用GPS信号和激光传感器,而不是局部使用激光传感器。在本文中,我们关注的主要功能之一:自主导航,其中包括检测和定位树木在如此复杂的环境中安全移动。自主导航需要精确且可靠的映射和本地化解决方案。在这种情况下,同时定位和映射(SLAM)是非常适合的解决方案。构造的地图可以可靠地用于计划移动机器人的语义路径,以便特定地对待每棵树。在凉亭和机器人操作系统(ROS)上进行的模拟证明,机器人可以在杨树林中自动导航。
摘要 由于分子遗传学和基因操作的进步,社会正在经历巨大的变革。最广泛使用的转基因特性使植物能够制造自己的杀虫剂,减少因昆虫攻击而造成的作物损失,或抵抗除草剂,使除草剂可用于杀死各种杂草而不会损害作物。这些特性已被纳入大多数大豆、玉米和棉花品种。基因工程可以应用于更广泛的作物,以除草剂和抗虫性以外的新方法和更广泛的应用。许多使用转基因作物的农民报告说,杂草控制更具成本效益,害虫损失更低。传统的育种和选择方法可以改良作物以达到预期目标,与转基因技术相比具有多种优势。转基因技术对社会极具价值,因为它提供了多种好处。转基因作物的种植面积每年呈指数级增长,这一事实可以用来衡量转基因技术的成功。它为利用新颖特性改造作物开辟了新的可能性。然而,近年来,转基因作物的使用已成为一个极具争议的话题,其根源在于误解和缺乏科学证据。另一方面,这场争论有助于推动其他领域的研究。因此,已经开发出了许多从转基因植物中去除标记基因的技术。本文的目的是回顾基因工程、其应用以及在现代作物改良中的重要性和未来前景。
应用程序编号:1级中的33/2024在工业中使用的化学品;用于科学的化学物质(除了医学或兽医用途外);摄影中使用的化学物质;农业中使用的化学物质;用于园艺的化学物质(除了杀菌剂,除草剂,除草剂,杀虫剂,寄生虫);除杀菌剂,除草剂,杀虫剂和寄生虫外,用于林业的化学物质;刺激植物生长的化学解决方案;植物营养;土壤化学添加剂;土壤调节化学品;土壤改善制剂;植物生长兴奋剂;生物刺激剂是植物生长兴奋剂;植物生长调节制剂;不断增长的媒体;肥料;生物肥料;化肥;复杂的肥料;复合肥料;土壤肥料;用于农作物的微量营养素;农作物生产的微量营养素;未加工的人造树脂;未加工的塑料;益生元添加剂用于农产品和植物的生长;肥料;土壤混合物[堆肥,肥料和肥料];用于工业目的的氨基酸;用于科学目的的氨基酸;用于纯化氨基酸的化学物质;灭火构图;回火准备;焊接准备;保存食品的化学物质;晒黑物质(用于皮革或皮革);工业粘合剂;粘合剂用于工业目的,其名称为Omnia Holdings Limited H Building H,Monte Circle Business Park,178 Montecasino Boulevard,Fourways,豪登省,豪登省,2191年,南非。
