简介:冲击壁是火星和许多其他行星体的无处不在地质过程,对于整个太阳系中岩石和冰冷体的表面相对年龄至关重要;在过去的数十亿年中,包括古代和现代火星都发生了这样的火山口事件[1]。这些陨石坑可以根据其形态和形成过程进行分类,包括作为斜坡型特征。在火星上对这些火山口形态的分类历史上已经证明了困难和耗时,这主要是由于1)缺乏质量,高分辨率图像和2)图像的巨大图像。我们的新方法试图通过使用基于机器学习的方法(ML)方法在MARS(32°N至32°S)中的较低纬度(32°N至32°S)内的准确分类的Rampart火山口数据库来纠正此问题。
模型结构:我们的方法利用火箭(随机卷积内核变换)算法[4]从陨石光谱中提取数值特征。虽然火箭在时间序列分类中的有效性被广泛认可,但其能力与本研究中光谱分类的挑战非常吻合。反射光谱虽然不是传统的时间序列,但在与时间序列数据具有相似性的波长跨波长中显示顺序模式。火箭的计算效率和对噪声的鲁棒性使其成为此任务的理想选择,在这种任务中,捕获微妙的光谱模式至关重要。它将大量随机初始化的卷积内核应用于光谱,每个卷积内核都有随机参数,例如长度,扩张,偏置和填充物。这种随机化使火箭列出了数据的局部和全局特征,这对于区分光谱模式至关重要。
1 哈佛大学分子与细胞生物学系,52 Oxford St.,剑桥,MA 02138,美国 2 高能物理部,史密森天体物理观测台,哈佛与史密森天体物理中心,60 Garden St,剑桥,MA 02138,美国 3 LRL-CAT,礼来公司,先进光子源,阿贡国家实验室,9700 S. Cass Avenue,莱蒙特,伊利诺伊州,60439,美国 4 钻石光源,哈威尔科学与创新园区,迪德科特,OX11 0DE,英国 5 哈佛大学纳米系统中心,11 Oxford St,LISE G40,剑桥,MA 02138,美国 6 蒙大拿州立大学地球科学系,226 Traphagen Hall,PO Box 173480,博兹曼,MT 59717,美国 7 PLEX 公司,275 Martine St.,美国马萨诸塞州福尔里弗 02723 100 室 通讯作者:Julie EM McGeoch;电子邮件:Julie.mcgeoch@cfa.harvard.edu
简介:元素丰度在陨石的组成矿物之间会进行分馏,即使是化学性质非常相似的稀土元素 (REE) 也是如此。先前的研究表明,亲石元素,特别是难熔亲石元素,在其母体的热变质过程中从原生相重新分布到次生相 [1-3]。然而,由于矿物颗粒尺寸相对较小(< 50 μm)且矿物中夹杂物(< 10 μm),因此,对于在母体中经历了水蚀变的碳质球粒陨石 (CC),这种重新动员(包括它们的元素分布,尤其是微量元素)的了解甚少 [4]。因此,我们开发了使用激光剥蚀电感耦合等离子体飞行时间质谱 (LA-ICP-TOF-MS) 进行定量元素映射的分析方法,不仅可以提供主要元素图,还可以提供具有大表面积 (cm × cm)、高空间分辨率 (5×5 μm/像素) 的微量元素图,并且对后续分析的表面影响可以忽略不计 [5]。这种元素映射已被证明是一种确定 H 球粒陨石中元素分布的有效工具,然后应该适用于由带有包裹体的小矿物颗粒组成的 CC。因此,在本研究中,我们旨在将 LA-ICP-TOF-MS 映射应用于 CM 球粒陨石 (CM),这是最丰富的 CC,显示出从几乎 3 型到 1 型的各种变质程度,以确定 (i) 组成矿物中的元素丰度,(ii) 最富含特定元素的相,以及 (iii) 组成矿物之间的元素分布,这可能揭示母体水蚀变过程中元素的重新动员,并有助于限制水蚀变的物理化学条件。
5 Arthur McClelland,6 David Lageson和7 Malcolm W McGeoch 1分子和蜂窝生物学系,哈佛大学,牛津街52号,美国剑桥市52号,美国02138,美国和高能物理学部,史密斯史密森学会天文学天文学天文学天文学天文学天文学和史密斯郡的史密斯和史密斯史密斯郡史密斯郡的史密斯式史密斯郡,60岁,cambridge st,cambridge st,cambridge s.2 LRL-CAT,Eli Lilly and Company,Advance Photon Source,Argonne National Laboratory,S。Cass Avenue,Lemont,Lemont,IL,60439 3,4钻石光源,Harwell Science and Innovation Campus,DIDCOT,OX11 0de,UK,UK OX11。5纳米级系统中心,哈佛大学,牛津街11号,莉丝·G40,马萨诸塞州剑桥,美国02138,美国。6地球科学系,226 Traphagen Hall,P.O。 框173480蒙大拿州立大学,Bozeman,MT 59717。 7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。 *通讯作者。 电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。 其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。 聚合物形成两维晶格,vertex间距离为4.9nm。 此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。 来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。6地球科学系,226 Traphagen Hall,P.O。框173480蒙大拿州立大学,Bozeman,MT 59717。 7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。 *通讯作者。 电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。 其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。 聚合物形成两维晶格,vertex间距离为4.9nm。 此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。 来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。框173480蒙大拿州立大学,Bozeman,MT 59717。7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。*通讯作者。电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。聚合物形成两维晶格,vertex间距离为4.9nm。此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。X射线分析证实了在4.9nm间间距的内部3维晶格中存在的存在,与陨石晶体中晶格的间距匹配。FTIR测量的酸处理的Ooid和Sutter's Mill Merteeritic晶体都通过分裂的酰胺I带的存在表明,具有扩展的反平行β片结构。似乎很有可能从天生时代开始的大量碳质源材料剩下的沉积碳酸盐中的血糖素痕迹,并且可能影响了Ooid的形成。引言血糖素是含铁的聚合物,已在五种原始类型的碳质软化陨石的提取物中鉴定出来,它们没有广泛的水性或热改变。在为这些“石质”陨石开发了有效的提取和分析技术后,我们将它们应用于2.1GYA化石纤维岩,然后将其用于当今的浮游物,以询问是否有任何痕迹的
本报告旨在向国会提供有关美国能源部 (DOE) 对马绍尔群岛共和国鲁尼特岛仙人掌陨石坑遏制结构进行的目视调查和地下水放射化学分析的活动和结果的信息,并确定这些调查和分析是否表明仙人掌陨石坑遏制结构内的污染物对埃尼威托克人民的健康风险发生了重大变化,如 2011 年岛屿地区法案第 112-149 号公法第 2 节所规定的那样。美国能源部于 2013 年和 2018 年对鲁尼特岛仙人掌陨石坑遏制结构完成了两次目视研究。这些研究评估了保护下方封装的受污染土壤和放射性碎片免受侵蚀的各个混凝土面板盖段的状况。虽然研究显示一些混凝土板存在可见缺陷,主要包括裂缝和混凝土板接缝和角落剥落,但能源部确定这些缺陷不是结构性的,也不太可能造成与放射性污染扩散到环境中相关的任何其他危害。此外,无损和核心样本测试结果表明,外部混凝土盖没有受损,并发挥了其预期作用,即提供有效的屏障以减少底层废料堆材料的自然侵蚀。鲁尼特岛地下水监测计划表明,在现有条件下,似乎没有明确证据表明仙人掌陨石坑放射性物质的扩散对近海泻湖或周围海域的辐射环境产生可测量的影响。泻湖水中观察到的 239+240 Pu 污染水平升高似乎主要是由泻湖沉积物中的钚引起的,而不是由仙人掌陨石坑污染物流入泻湖引起的。根据视觉研究和从 Runit 地下水监测计划观察到的数据,能源部确定,仙人掌陨石坑围堵结构内的污染物对埃尼威托克人民的健康风险没有显著变化。2022 年,能源部与美国陆军工程兵团 (USACE) 展开合作,协助设计和安装额外的地下水监测资源,以改善未来数据,并更详细地描绘仙人掌陨石坑围堵结构内部及周围的地下水流动和特征。
从遗迹海洋世界带回的样本:卡拉萨斯任务组前往谷神星的奥卡托陨石坑。 LE Kissick 1、G. Acciarini 2、H Bates 1、N. Berge 3、M. Caballero 4、P. Cambianica 5、M. Dziewiecki 6、Z.、F. Enengl 8、O. Gassot 9、SB Gerig 10、F. Hessinger 11、N. Huber 8、R. Hynek 12.、Kędziora B. 13、Kiss A. 14、Martin M. 15、Navarro Montilla J. 16、Novak M. 17、Panicucci P. 17、Pellegrino C. 19、Pontoni A. 20、Ribeiro T. 21、Riegler C. 1 牛津大学,2 代尔夫特理工大学,3 奥尔良大学、法国国家空间研究中心,4 加泰罗尼亚理工大学,5 帕多瓦大学,6 弗罗茨瓦夫理工大学,7 DIST-Università Parthenope,8 皇家理工学院,9 IPAG,13 华沙理工大学,14 布达佩斯技术与经济大学,15 斯图加特大学,16 国家应用科学研究所,17 维也纳技术大学,18 ISAE-SUPAERO,19 慕尼黑工业大学,20 瑞典基律纳空间物理研究所。 (电子邮箱:lucy.kissick@earth.ox.ac.uk)。
大型陨石碰撞引起的地球轴变化 GALLANT 1 评估了大型陨石碰撞引起的地球轴变化。但他估计的位移比我十年前发表的更大,而且最近略有修改。他计算出一颗朱诺大小的陨石(直径约 190 公里)以 20 公里/秒的速度碰撞将导致 0° 45 的轴位移。但是,通过使用地球角动量与碰撞体动量矩相互作用的正确标准,实际位移只有大约 0° 02'。事实上,一个更大的物体,比如直径 320 公里,以 72 公里/秒的最大可能速度碰撞,尽管能量是朱诺示例的 75 倍,也只会产生 0° 32' 的轴位移。表 1 给出了与地球和月球碰撞的最大影响的例子。假设碰撞路径与垂直于赤道的大圆相切,密度为 3.5,速度为 72 公里/秒,爆炸产物反向碰撞引起的完全反弹最大程度地近似于两倍动量交换。在这些绝对最佳的条件下,轴位移为反正切(2m VR:地球的角动量),其中 m V 是陨石的动量,R 是地球或月球的半径。当假设碰撞与赤道相切时,轴变化为零,但两个动量会导致自转速度的变化。月球的等效变化要大得多,它们表明,只要有耐心和时间,人类就有可能在没有卫星和登陆月球的情况下看到整个表面。它们也与月球形状的考虑有关。