图 1. (A) 结合巨胞饮诱导肽(细胞摄取的生理刺激物)和膜溶解肽(破坏细胞质易位障碍的物理化学方法)用于细胞质生物活性货物的递送。(B) SDF-1α 衍生肽的序列。(C) 用 5 µM 肽和 1 mg/mL Dex70-FL 在 α-MEM(-) 中处理 30 分钟后诱导 HeLa 细胞对 Dex70-FL 的摄取。比较 SN21 与 (D) SDF-1α 和 (E) R8 或 TAT 诱导的 Dex70-FL 摄取。数据呈现为三个生物学重复的平均值 ± 标准误差 (SE)。单因素方差分析,然后进行 (C) Dunnett 事后检验和 (D, E) Tukey 事后检验。**,P<0.01; ***,P<0.001;ns,不显著
图 1. 制造过程示意图。(a)PMP 制备过程和样品照片,白色箭头指向 PMP。(b)固定在 3D 打印支撑框架上的 Metal-FPI 上的聚对二甲苯沉积。插图显示了聚对二甲苯封装的普遍特征。(c)PMP 的 SEM 横截面以及相关的 EDS 映射。
摘要:膜蒸馏(MD)是一个有吸引力的分离过程,可以与具有低温差异的热源一起使用,并且对浓度极化和膜结构的敏感性较小,而不是其他压力驱动的膜分离过程,从而使其可以使用低级热能,从而有助于减少能源的能量,以降低浓度的溶液,并提高了浓度的水平,并提高了浓度的回收率。本文对MD与废热和可再生能源的整合进行了综述,例如太阳辐射,盐梯级太阳能池塘和地热能,以进行淡化。此外,还具有全面总结了具有压力粘贴渗透的MD杂种(PRO),多效应蒸馏(MED),反渗透(RO),结晶,正向渗透(FO)和生物反应器以处理浓缩溶液。对混合MD系统的批判性分析将有助于MD技术的研究和开发,并将促进其应用。最终,提出了MD的可能研究方向。
塑料培养通过聚合膜提高了作物质量和产量,但由于湿度和污染,它们的处置不当会损害环境。这项研究旨在使用大豆和花生壳以及聚(丁基 - 磷酸二甲甲酸酯)(PBAT)开发可生物降解的覆盖膜(PBAT)。残基的特征是通过热重分析的特征,并通过吸水,接触角和机械性能评估覆盖膜。残基的热行为表明稳定性低于200ºC。农业浪费改善了疏水性,但将膜的吸水值提高了18.5倍(14天后PBAT/SH5)。通过扫描电子显微镜获得的显微照片表明残基颗粒的重要分布和团聚酸盐的形成,导致机械性能降低。研究发现,可以将以粉末形式的农业工业残基添加到聚合物基质中,以通过传统的加工技术产生可生物降解的覆盖膜。这种方法有可能为更可持续的生产系统做出贡献。
Figure 1 Work breakdown Structure (WBS) for the Biodegradable Mulch Films (BDM) development ............................................................................................................................... 2 Figure 2: (a) Representation of benefits and pollution problems associated with mulches from conventional plastics; (b)对2025年从非洲进入海洋的陆基塑料废物的预测-Jambeck等人,2018年,估计估计到2025年,塑料的10.5 mton将进入海洋,其中尼日利亚是最大的污染者)............................................................................................................................................................................................................................................................................................................................................................................................................................................. Agricultural Mulch Films Volume (%), Geography, Africa, 2021 estimates ................ 6 Figure 5: Material types currently used in the agricultural films in Africa ................................... 7 Figure 6: Vale chains of mulch films .......................................................................................... 9 Figure 7: Value chain point indicating GHG reduction potential of BDMs over conventional plastic mulches ......................................................................................................................... 11 Figure 8: Factors Limiting BDM market in Nigeria ................................................................... 13 Figure 9: Market share of the major players in Nigeria ............................................................ 15 Figure 10: Market Segments, crop type under mulches.......................................................... 15 Figure 11: Nigerian starch Market Size in thousand metric ton, 2016-2026.[source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027)...................... 2 Figure 12: Volume share (%) by type of starch, 2021, Nigeria [source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ......................................... 2 Figure 13: Market Share (%), by Application, Nigeria, 2021。Source: Mordor Intelligence Custom Report on Nigeria Industrial .......................................................................................... 3 Figure 14: Sources of starches in Nigeria, as of 2021.Source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ...................................................... 3 Figure 15: World regional share of cassava production ............................................................ 4 Figure 16: Cassava production by the ten top countries (FAOSTAT-2020) .............................. 5 Figure 17: Production of cassava in Nigeria per State............................................................... 5 List of Tables
隔离器是电子设备,可向控制器传输数字信号,同时还提供电流隔离,以提供用户界面和低压电路的安全电压水平。它们具有广泛的应用,包括工业,汽车,消费者和医疗电子产品,每个应用都需要特定的最低隔离水平。隔离的基本形式由光学,电容和磁耦合提供[1]。隔离器必须通过几个监管标准才能将其发布到市场。这些包括可靠性测试,例如承受电压和电压电压以及高压耐力(HVE)。承受电压和电涌电压是相对较快的持续时间测试,但是,HVE可能需要几个月到几年才能完成[2]。目前的工作基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了处理效果对隔离器中使用的各种材料及其在电崩溃之前的行为的影响。聚酰亚胺(PI)是
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
- 在本文件中,请考虑所有国际、欧洲、国家和工作组关于您的肿瘤实体的指导方针 - 仅关注您的肿瘤实体的特定标准;一般要求,例如神经外科或放射学,在“总体路线图”中提及。 - 如果您对不同章节有一般标准,并且您认为这些标准很重要,请将它们添加到单独的部分(作为项目符号),然后可以将它们集成到总体部分中。 - 除了描述应该提供/做什么之外,描述不再应该做什么也很重要(如果重要) - 关注一线治疗 - 化疗药物的一般描述/特征将成为路线图的一部分——在此针对肿瘤类型的特定部分中描述所使用的组合以及在出现不良事件、毒性或过敏反应时进行的剂量调整
表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件