(12)多功能低温高磁场温度计:薄膜金属陶瓷的低温磁电阻,NA Gershenfeld、J. VanCleve、MJ Graf、NA Fortune 和 JS Brooks,第 18 届低温物理国际会议论文集,日本应用物理学杂志增刊(26-3),第 1741 页(1987 年)。
变色已被确定为更换假牙的主要临床原因之一 (15)。因此,本实验室研究的目的是评估漱口水对采用不同表面处理的可压锂二硅酸盐玻璃陶瓷颜色稳定性的影响。零假设指出表面处理和漱口水浸泡不会影响可压锂二硅酸盐玻璃陶瓷的颜色稳定性。材料与方法使用统计软件程序 (G*Power 3.0.10;杜塞尔多夫海因里希海涅大学) 进行功效分析。样本量是根据假设置信水平 = 95% 和研究功效 = 80% 来估算的。根据 Derafshi 等人的研究,与锂二硅酸盐玻璃陶瓷相当的 VMK 95 长石陶瓷的平均 ΔE 在 CHX 中浸泡时为 1.15,在 LST 中浸泡时为 0.90 (8)。根据平均值的比较,并使用最高标准差来确保研究能力,计算每个亚组的样本量为七个。
摘要Al 2 O 3 /Al 6 Ti 2 O 13具有低热膨胀性能的复合陶瓷有望通过定向能量沉积物激光器(DED-LB)技术快速制备大规模和复杂组件。但是,由于对过程条件的理解不足,DED-LB技术的更广泛应用受到限制。Al 2 O 3 /Al 6 Ti 2 O 13(6 mol%TIO 2)复合陶瓷的质量,微观结构和机械性能作为能量输入的函数在广泛的过程窗口中被系统地研究。在此基础上,揭示了固化缺陷和微观结构的演化过程的形成机理,并确定了优化的过程参数。结果表明,高能量输入提高了熔融池的流动性,并促进了组成相的均匀分布和完整的生长,从而促进消除凝固缺陷,例如孔隙和条间隙。此外,微结构的大小在很大程度上取决于能量输入,当能量输入增加时增加。此外,由于固化条件的变化,α -AL 2 O 3相的形态随着能量输入的增加而逐渐从细胞转变为细胞树突。在凝固缺陷和微观结构大小的全面影响下,Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的裂缝韧性和弯曲强度随着能量输入的增加而呈现抛物线法行为。在0.36 - 0.54 W ∗ min 2 g - 1 mm -1的能量输入范围内实现最佳的形状质量和出色的机械性能。在此过程窗口中,Al 2 O 3 /Al 6 Ti 2 O的平均微度,断裂韧性和弯曲强度分别高达1640 HV,3.87 MPa M 1/2和227 MPa。这项研究提供了确定熔体生长Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的DED-LB的过程参数的实用指导。
β-磷酸三卡氏菌(β-TCP)主要是因为其出色的生物降解性。然而,单相β-TCP具有受控性能的合成而不影响陶瓷的生物相容性是一个挑战。这项研究的目的是合成可生物塑料和破骨的β-TCP作为骨替代物质,并评估陶瓷的机械性能。在这项工作中,采用了两步热处理过程。最初,将材料在700 O C下进行热处理,随后在1000、1100和1200 OC的不同温度下烧结。显示β-TCP相的稳定性在1200 O C烧结时与某种形成α-TCP相时烧结时的稳定性。发现相纯β-TCP样品的直径拉伸强度约为4.06 MPa,并且在存在α-TCP相的存在下被发现下降。生物细胞研究表明,β-TCP样品作为细胞附着,增殖,分化和矿化的底物非常出色,因此表现出极好的生物相容性。这项研究表明,β-TCP用作骨骼替代物质的潜力很大。
— 键合过程中铜 (Cu) 箔的氧化会使熔化温度从 1,083°C 降低到 1,065°C — 最大金属化厚度为 1 毫米 — 陶瓷的两侧都必须有金属化层 — 例如氧化铝 (Al 2 O 3 )、氮化铝 (AlN) 和氧化锆 (ZrO 2 ) 掺杂的高性能基板 (HPS)。 o 活性金属键合 (AMB)
无定形铁钙磷酸盐 (Fe-ACP) 对某些啮齿动物牙齿的机械性能起着至关重要的作用,牙齿非常坚硬,但其形成过程和合成途径仍不清楚。本文报道了在柠檬酸铁铵 (AIC) 存在下含铁无定形磷酸钙的合成和表征。铁在所得颗粒中以纳米级均匀分布。制备的 Fe-ACP 颗粒在水、模拟体液和醋酸盐缓冲溶液 (pH 4) 等水性介质中高度稳定。体外研究表明这些颗粒具有良好的生物相容性和成骨特性。随后,利用放电等离子烧结 (SPS) 来固化初始 Fe-ACP 粉末。结果表明,陶瓷的硬度随铁含量的增加而增加,但铁过量会导致硬度迅速下降。可以获得硬度为 4 GPa 的磷酸铁钙陶瓷,高于人类牙釉质。此外,由铁钙磷酸盐组成的陶瓷表现出增强的耐酸性。本研究提供了一种制备 Fe-ACP 的新方法,并展示了 Fe-ACP 在生物矿化中的潜在作用以及作为制备耐酸高性能生物陶瓷的起始材料。
无定形铁钙磷酸盐 (Fe-ACP) 对某些啮齿动物牙齿的机械性能起着至关重要的作用,牙齿非常坚硬,但其形成过程和合成途径仍不清楚。本文报道了在柠檬酸铁铵 (AIC) 存在下含铁无定形磷酸钙的合成和表征。铁在所得颗粒中以纳米级均匀分布。制备的 Fe-ACP 颗粒在水、模拟体液和醋酸盐缓冲溶液 (pH 4) 等水性介质中高度稳定。体外研究表明这些颗粒具有良好的生物相容性和成骨特性。随后,利用放电等离子烧结 (SPS) 来固化初始 Fe-ACP 粉末。结果表明,陶瓷的硬度随铁含量的增加而增加,但铁过量会导致硬度迅速下降。可以获得硬度为 4 GPa 的磷酸铁钙陶瓷,高于人类牙釉质。此外,由铁钙磷酸盐组成的陶瓷表现出增强的耐酸性。本研究提供了一种制备 Fe-ACP 的新方法,并展示了 Fe-ACP 在生物矿化中的潜在作用以及作为制备耐酸高性能生物陶瓷的起始材料。
Martoxid ® 氧化铝等级是技术陶瓷应用的首选材料,因为它们满足并超越了最高的产品质量标准和客户要求。上一页的 Martoxid ® 等级综合列表显示了 Huber Advanced Materials 提供的所有等级以及各个产品特性和陶瓷应用。Martoxid ® MRS 和 Martoxid ® MRS-1 是专门为满足客户对高性能陶瓷的要求而设计的氧化铝。它们非常适合用于复杂的电子
用于医疗设备的高性能技术陶瓷 CoorsTek 是一家全球医疗设备技术陶瓷部件制造商。该公司成立于 1910 年,一直处于为众多行业开发技术陶瓷的前沿。如今,CoorsTek 凭借 400 多种独特的专有材料配方、无与伦比的研究和工程专业知识以及广泛的制造工艺引领先进材料行业。