无机工业化学涵盖了对现代工业至关重要的多种工艺和应用。从化学品、金属和陶瓷的生产到材料科学的进步,这一领域在塑造制造业、电子业和能源生产等各个领域方面发挥着关键作用。本文全面概述了无机工业化学,深入探讨了催化、电化学和冶金等关键工艺。它还探讨了可持续实践和纳米技术整合方面的最新创新。通过研究既定的实践和新兴技术,本文提供了对无机工业化学动态格局的细致入微的理解。
1。V. I. Matkovich,硼和耐火硼(Springer,1977)。2。X. Luo等。,金属添加剂对热压tib 2的致密性行为的影响。浅金属,1151-1155(2009)。3。A.A. Shiriev,A。S。Mukasyan,“ SHS过程的热力学”中的“自我传播高温合成的百科全书”中。(Elsevier,2017年),pp。385-387。4。W. Tao等。(2009)400KA大型铝还原电池中热电耦合场的有限元分析。在2009年,世界非网格连接风能和能源会议(IEEE),第1-4页。5。X. Cao等。,添加Ni对钨二吡啶的无压烧结的影响。国际难治金属和硬材料杂志41,597-602(2013)。6。X. Cao等。(2011)高温电化学合成熔融盐的硼化物。高级材料研究(Trans Tech Publ),第463-466页。7。V. Yukhvid,SHS过程的修改。纯和应用化学64,977-988(1992)。8。C. Wang,X。Xue,X。Cao,H。Yang,BN添加对Tib 2- al复合材料的机械性能和微观结构的影响。东北大学杂志(自然科学),19(2012年)。 9。 W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。东北大学杂志(自然科学),19(2012年)。9。W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。W. Chao等。,一种制造Aln-Tib2复合陶瓷的新方法。材料和制造过程28,953-956(2013)。10。11。C. Wang,J。Zhang,X。X. Xue,X。Z. Cao(2013)通过真空金属浸润制造B-Ni-Al屏蔽材料。高级材料研究(Trans Tech Publ),第410-413页。P.中国非有产金属协会的交易17,S27-S31(2007)。12。X. Cao等。,来自氯化氯化物 - 尿素深共晶溶剂的SN涂层的电化学行为和电沉积。涂料10,1154(2020)。13。H. C. Yi,J。Moore,粉末 - 压缩材料的自传播高温(燃烧)合成(SHS)。材料科学杂志25,1159-1168(1990)。14。W. Zhang等。,CR含量对Cr – Ti – C系统的SHS反应的影响。合金和化合物杂志465,127-131(2008)。
生物陶瓷领域已成为各种医疗和牙科应用的重要组成部分,磷酸钙 (CaP) 材料如磷酸三钙 (TCP) 引起了广泛关注。CaP 生物陶瓷因其出色的生物相容性、骨传导性和促进新骨形成的能力而受到重视,这使得它们在优化牙科植入物的整合和性能方面具有不可估量的价值。这项研究探索了一种开发多功能 CaP 基陶瓷的新方法,该方法可利用机器学习 (ML) 建模技术的强大功能,应用于制药、牙科甚至古代文物保存领域。磷酸三钙是一种被广泛研究的 CaP 陶瓷,是这项研究的重点,因为它可以制造出不同程度的结晶度和孔隙率,以定制其生物降解和骨再生特性。通过使用前馈人工神经网络 (FFANN),研究人员能够预测牙科陶瓷、生物相容性和组织反应在广泛的无毒性和骨骼生长参数范围内的变化。 FFANN 建模方法提供了有关这些关键属性之间关系的宝贵见解,从而可以优化基于 CaP 的陶瓷以用于特定的临床和保存应用。TCP 的多功能性不仅限于牙科植入物,还可用于牙周再生、牙根修复甚至直接牙髓封盖手术。通过操纵材料的成分和微观结构,研究人员和临床医生可以定制 CaP 生物陶瓷的性能,以满足医疗保健和文化遗产部门的不同需求。随着生物陶瓷领域的不断发展,先进的 ML 建模技术(例如本研究采用的 FFANN 方法)的集成有望为开发创新的、组织友好的陶瓷开辟新的可能性,从而彻底改变牙科、药物配方和珍贵古代文物的保存。
除了传统能源之外,铜铍合金和氧化铍陶瓷在太阳能光伏电池的两大主导技术中越来越受到青睐。在薄膜太阳能领域,铍合金在连接太阳能电池板的导电端子时具有出色的热管理、导电性和强度。在替代聚光光伏 (CPV) 技术中,氧化铍陶瓷的卓越热管理性能使电池能够在非常高的太阳能浓度下运行,已经达到太阳强度的 1,000 倍,同时仍能保持 CpV 电池的精密电子元件冷却,这是在阳光充足的地区向电网添加太阳能的关键因素。
• 先进陶瓷研究中心 先进陶瓷研究中心的使命是开展基础陶瓷科学研究和先进智能陶瓷的开发,以解决环境和能源问题。该中心于 1973 年在鹤舞(名古屋)校区成立,当时名为陶瓷研究实验室 (CRL),1977 年迁至多治见市。2012 年,CRL 改组为先进陶瓷研究中心 (ACRC),旨在开发智能陶瓷。ACRC 长期以来一直支持该领域许多公司的工业研究,并为陶瓷科学以及全球研究工程师的学术教育做出了贡献。