5.3.1 人工智能可能影响放射学的领域 ...................................................................................................... 35 5.3.2 改善放射学检查 ...................................................................................................................... 35 5.3.3 接管大部分工作任务并取代放射科医生 ................................................................................................ 36 5.3.4 提高诊断和治疗的准确性 ...................................................................................................................... 37 5.3.5 应用人工智能的领域 ...................................................................................................................... 38 5.3.6 金融投资领域 ............................................................................................................................. 38 5.3.7 隐私和数据安全 ............................................................................................................................. 39 5.3.8 拒绝放射学检查 ............................................................................................................................. 40
增加受控原子和量子比特的数量的必要先决条件是允许应用相应数量信号的微结构,例如B.通过整合微波线路。这是通过叠加结构实现的,类似于多层电路板。 PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。原则上,金属层的数量是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用符合环境超高真空对原子和离子捕获的严格要求以及低温操作的材料;此外,该结构的高频特性非常优异。
量子信息处理正在从纯粹的学术学科稳步发展,转向整个科学和行业的应用。从基于实验室的,概念验证实验过渡到量子信息处理硬件的稳健,集成的实现是此过程的重要一步。但是,传统实验室设置的性质并不容易扩大系统大小或允许在实验室级环境之外的应用。这种过渡需要克服工程和集成方面的挑战,而无需牺牲实验室实施的最先进绩效。在这里,我们提出了一个19英寸的机架量子计算演示器,基于线性保罗陷阱中的40个CA +光学Qubits,以应对许多此类挑战。我们概述了机械,光学和电气子系统。此外,我们描述了量子计算堆栈的自动化和远程访问组件。我们通过描述与量子计算相关的表征测量结果,包括站点分辨的单量相互作用,以及通过Mølmer-Sørensen相互作用通过两种不同的地址方法提供的Mølmer-Sørensen相互作用进行纠缠。使用此设置,我们生产最大的纠缠的Greenberger-Horne-Zeilinger状态,最多24个离子,而无需使用后选择或误差缓解技术;与公认的常规实验室设置相提并论。
*路加福音:宾夕法尼亚州立大学,nkl10@psu.edu。Munshi:耶鲁大学,kaivan.munshi@yale.edu。 OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。 辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。 我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。 Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。 约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。 通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。 我们应对可能存在的任何错误负责。 这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。Munshi:耶鲁大学,kaivan.munshi@yale.edu。OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。 辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。 我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。 Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。 约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。 通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。 我们应对可能存在的任何错误负责。 这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。我们应对可能存在的任何错误负责。这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。
摘要:持续的发光材料在智能信号,抗矛盾和体内成像等各个领域都有应用。但是,缺乏对控制持续发光的确切机制的透彻理解,因此很难开发优化它的方法。在这里,我们提出了一个精确的模型,以描述Znga 2 O 4:Cr 3+的持续发光的各种过程,这是现场的主力材料。已经解决了一组速率方程,并且已经对电荷/放电和热发光测量进行了全局拟合。我们的结果建立了陷阱深度分布和余滴动力学之间的直接联系,并阐明了与Znga 2 O 4:Cr 3+纳米颗粒相关的主要挑战,确定了较低的陷阱概率和光学偏差,这是限制Znga 2 O 4:CR 3+的主要因素,并与大型Margin进行改进。我们的结果强调了准确建模对于未来余辉材料和设备设计的重要性。
人工智能很可能在 2023 年及以后继续成为热门话题。一些国家最近出台了以人工智能为重点的立法。自 2023 年 1 月 1 日起,美国纽约州禁止在就业决策中使用人工智能工具,除非此类使用经过偏见审计并披露,同时提供请求替代流程的选项。2021 年,欧盟委员会提议实施一个新的法律框架来应对人工智能使用的风险,该框架将规定有关人工智能使用和该技术高风险应用的要求和义务,并制定执法和治理结构。在德国,雇主在将人工智能引入工作场所时已经有义务咨询工会(代表工人的咨询机构)。
陷阱 2. 暗示性图像:人形机器人的图像经常用于说明有关人工智能的文章,即使文章的内容与机器人无关。这给读者一种错误的印象,认为人工智能工具是具象的,即使它只是从数据中学习模式的软件。
Sana Halwani 受邀在加拿大知识产权协会的项目中分享她的专业知识。Sana 主持了一场关于性别偏见在人工智能领域表现方式、我们可以做些什么以及人工智能如何帮助我们解决性别偏见的讨论。
Felice, Florian 等人。“统计增强学习:一种增强(任何)学习算法的特征工程框架。”arXiv 预印本 arXiv:2306.17006 (2023)。
近年来,欧洲和其他国家越来越多地成为各种操纵或胁迫手段的目标,这些手段仍处于暴力的门槛之下,通常被称为混合威胁。1 例如,2016 年,美国大选被外国政府通过有针对性的宣传和泄露黑客材料操纵,这些材料危及了其中一位总统候选人的安全。同年,英国留在欧盟的公投也成为精心策划的宣传行动的目标。2 因此,欧盟战略指南承认需要全面应对这些威胁。它规定开发一个工具箱,为成员国提供广泛的措施来应对混合活动,如果它们选择寻求欧盟的援助。欧盟混合工具箱 (EUHT) 旨在收集所有可用于对抗混合战役的民用和军用工具。计划在 2022 年底前投入使用,但这似乎已无法实现。然而,乌克兰冲突证明了拥有协调反应能力以对抗混合战役的重要性,并可能为 EUHT 的发展提供动力。