使用局部量子电路集合生成 k 设计(模拟 Haar 测度的伪随机分布,最高可达 k 矩)是量子信息和物理学中一个非常重要的问题。尽管人们对普通随机电路的这一问题有了广泛的了解,但对称性或守恒定律发挥作用的关键情况仍是根本性的挑战,人们对此了解甚少。在这里,我们构造了显式局部酉集合,在横向连续对称性下,在尤为重要的 SU(d) 情况下,它可以实现高阶酉 k 设计。具体来说,我们定义了由 4 局部 SU ( d ) 对称哈密顿量以及相关的 4 局部 SU ( d ) 对称随机幺正电路集合生成的卷积量子交替 (CQA) 群,并证明对于所有 k < n ( n − 3 )/ 2,它们分别形成并收敛到 SU ( d ) 对称 k 设计,其中 n 是量子位元的数量。我们用来获得结果的一项关键技术是 Okounkov-Vershik 方法的 S n 表示理论。为了研究 CQA 集合的收敛时间,我们使用杨氏正交形式和 S n 分支规则开发了一种数值方法。我们为各种重要电路架构的亚常数谱间隙和某些收敛时间尺度提供了强有力的证据,这与无对称性的情况形成对比。我们还全面解释了使用对无对称性情况有效的方法(包括 Knabe 的局部间隙阈值和 Nachtergaele 的鞅方法)严格分析收敛时间的困难和局限性。这表明,可能需要一种新方法来理解 SU (d) 对称局部随机电路的收敛时间。
YCLIC烯烃共聚物(COC)包括一类重要特性的重要特性,例如软材料或硬材料,具体取决于最终共聚物组成中Norbornene Monober的含量。在普通的商业共聚物中,诺本烯的量超过20%(通过mol),该量被随机分布在共聚物的微观结构中,并使最终聚合物具有无定形和光学透明的结构。共聚物结构中悬齿含量的增加导致最终共聚物的玻璃过渡温度(T g)的相应升高。这种类型的COC的显着光学特性在很大程度上取决于它们的无定形结构,这不仅限于可见的光波长范围,因此COC可以用作紫外线和可视波长中的透明聚合物,以实现合适的光学透明产品。由于对化学物质尤其是极性溶剂的耐药性较高,因此使用COC与其他聚合物以竞争方式生产实验室设备。另一方面,COC是惰性的生物材料,使其成为适用于药物包装申请的候选者,包括预填充注射器。水是用于生产可注射产品的主要溶剂,因此这些共聚物的吸水率低可确保在环境条件下最终产物的尺寸稳定性。在高度潮湿的环境中,COC的吸水能力的限制为4和10倍,比聚碳酸酯和聚甲基丙烯酸甲酯聚合物的吸水能力分别限制为4和10倍。最后,提到了COC处理及其应用的详细信息。在这项研究中,在对COC进行了简要介绍之后,讨论了不同催化剂的聚合方法,并讨论了这些共聚物的光学,机械和热特性。
在许多物理学领域中,找到在给定物体中随机分布的平均和弦长度是一个自然的问题。从数学角度来看,这是一个看似复杂的任务,因为人们应该考虑线的空间和角度分布以及它们如何相交对象的表面。对于凸形的身体,答案令人惊讶地简单,由平均和弦长度定理给出,该定理已有一个多世纪[1]。它指出,平均和弦长度⟨c⟩与物体的形状无关,并且仅取决于体积V与表面积的比例为⟨= 4 v /。从各种角度得到证明[2-4]。最近才表明,该定理可以进一步推广到扩散物体中随机行走的研究。平均路径长度定理[5]指出,平均路径长度仍然简单地是⟨l⟩= 4 v /;这与介质的形状和散射 /扩散特性无关。有效性延伸到许多领域,因为它对物体内部的任何随机步行都是有效的,并且与封闭散射介质中的几何光学元件特别相关。该定理的一个重要条件是,入口点和初始方向是均匀和各向同性分布的,在光学中,这与兰伯特的照明相当[2]。路径长度分布和平均路径长度是许多光学系统设计的核心,可以使用射线光学描述。它们可用于计算吸收和散射培养基的光学特性[6,7],药物粉末中的折射颗粒培养基[8],用于太阳能电池设计[9-11],随机激光[12]和集成球[13,14]。射线追踪也可以与衍射效应结合使用,以计算大型粒子的电磁散射特性,例如几何光学近似和物理光学模型[15 - 20]或
这项研究检查了雌性Wistar大鼠中Azanza Garckeana水提取物的抗氧化活性以及安全性。在随机分布28个女性Wistar大鼠(平均体重= 159.25±3.32 g)之后,分为四(4)个组,该组包含七个大鼠(A-D),每组含有7只大鼠(动物),每天给予A组的大鼠每天给予A组中的大鼠,而A. garckeana Fruf Pulp的水组则为或255岁,均为55岁的A. garckeana fulp and rats and rats and 255,MG和2500,res the in 125,和500 c。和D分别为21天。使用已建立的方法在大鼠上检查了一些抗氧化活性以及肾脏和肝功能指标。与对照相比,对测定的所有肝功能指标均未显示出显着(p> 0.05)的差异。与对照组相比,与对照组相比,肝酶的浓度显示肝丙氨酸氨基转移酶,肝脏天冬氨酸氨基转移酶,乳酸脱氢酶和肝磷酸磷酸酶没有显着差异(P> 0.05)。相反,所有肾脏功能指数在提取后均显示出显着增加(p <0.05),表明对肾功能的潜在影响。在肾脏和肝脏的水平上观察到显着降低(P <0.05),而肾脏和肾脏丙二醛则降低,而肾脏和肝超氧化物歧化酶以及肝马内醛显着升高(P <0.05)。总体而言,A。garceana的水性果肉提取物对所研究剂量时的肝脏指数没有破坏作用。但是,由于研究剂量的肾功能指数在肾功能指数中观察到的生化改变,可能对肾脏产生显着副作用。
小麦是一种重要的谷物,全球一半人口都食用小麦。小麦面临环境压力,人们使用了不同的技术(CRISPR、基因沉默、GWAS 等)来提高其产量,但 RNA 编辑 (RES) 在小麦中尚未得到充分探索。RNA 编辑在控制环境压力方面具有特殊作用。对不同类型的小麦基因型中的 RES 进行了全基因组鉴定和功能表征。我们通过 RNA 测序分析采用了六种小麦基因型来实现 RES。研究结果表明,RNA 编辑事件均匀发生在所有染色体上。RNA 编辑位点随机分布,在小麦基因型中检测到 10-12 种类型的 RES。在耐旱基因型中检测到的 RES 数量较多。在六种小麦基因型中还鉴定了 A-to-I RNA 编辑(2952、2977、1916、2576、3422 和 3459)位点。基因本体分析后发现,大多数基因参与了分子过程。还检查了小麦中的 PPR(五肽重复序列)、OZ1(细胞器锌指序列)和 MORF/RIP 基因表达水平。正常生长条件使这三个不同基因家族的基因表达出现差异,这意味着不同基因型的正常生长条件可以改变 RNA 编辑事件并影响基因表达水平。而 PPR 基因的表达没有变化。我们使用变异效应预测器(VEP)来注释 RNA 编辑位点,Local White 在蛋白质的 CDS 区域具有最高的 RES。这些发现将有助于预测其他作物的 RES,并有助于小麦抗旱性的发育。
随着电动汽车(EV)的运营寿命终结,其电池保留了巨大的经济价值,并为二人使用和物质回收提供了有希望的机会。这对于全球南部和其他欠发达地区特别有说服力,在这里,可靠的能源存储对于解决弱甚至不存在的电网和能源基础设施所带来的关键挑战至关重要。,尽管存在这种潜力,但围绕第二次生命电池的技术性能,安全性和重新认证的严重不确定性阻碍了广泛的采用。在重新部署它们的情况下,估计和实际性能之间的不匹配通常会使电池在技术上不合适或危险,从而使他们成为打算受益的社区的责任。这种严重的未对准加剧了能源访问差异,并破坏了能源正义的更广泛的愿景,强调了迫切需要强大而可扩展的解决方案以释放潜力。在Pulsebat数据集中,作者测试了464个退休的锂离子电池,涵盖了3种阴极材料类型,6种历史用法,3种物理格式和6种容量设计。对每个第二寿命电池进行重复进行脉冲测试实验,其脉冲宽度,10个脉冲幅度,多重电荷和健康状况,例如,从0.37到1.03(由于不一致而导致的名义容量)。pulsebat数据集的一部分用于自然通信出版物,该出版物解决了在随机分布状态的收费状态下解决了最先进的估计问题1。PulseBat数据集记录了这些测试条件,电压响应以及受注入的脉冲电流约束的温度信号,这些脉冲电流可用作关键诊断任务的宝贵数据资源,例如电荷估计,最新估计,最先进的健康估计,PORTODE材料类型识别,开放式电流电流重新构造,热管理,热管理,以及其他。
基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。
基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。
这项研究旨在评估补充益生菌的饮食(芽孢杆菌),益生元(壳聚糖)和合成生物学在120天内的生长性能,先天免疫系统,抗氧化剂水平,肠道社区和粮食质量。实验性鱼(15.5±0.352g)随机分布到12个矩形聚乙烯储罐中,每个储罐60鱼。测试了四种重复的四种治疗方法:对照,益生菌(Sanolife®Pro-F,Pro),益生元(壳聚糖,PRE)和合成生素(益生菌和壳聚糖的组合,SYN)。结果表明,在益生菌治疗中,溶解的氧浓度显着增加和pH水平提高。与对照组相比,所有处理中的联合氨(NH3)水平均降低。益生元补充的饮食显着改善了最终体重,最终长度,体重增加,状况因子,平均每日体重增加,特定的生长速度和存活率。在补充益生菌的所有处理中,血清溶菌酶活性和一氧化氮水平均高。此外,益生菌组中肝脏中的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)酶水平明显更高,而马发二醛(MDA)水平降低。益生菌的添加和合成生的存在增加了四个月的鱼类肠和池塘水的总细菌数量。病原性气管疏松性仅在对照组的水中鉴定出来。大肠杆菌和沙门氏菌。16S rDNA基因测序在益生菌处理的水中鉴定出了sphaericus sphaericus,在对照处理的肉体中鉴定出cile胶菌菌。添加芽孢杆菌菌株和壳聚糖分别增强了尼罗罗非鱼(Oreochromis niloticus)的生长和健康。
量子电子器件,例如量子点接触 (QPC) 和量子点,因具有电自旋控制的潜力而引起了人们对自旋电子学和量子信息处理应用的极大研究兴趣 1–6。这些器件可能构成未来量子电路的构建块,例如基于大量相同量子点使用 QPC 作为电荷传感器的量子比特阵列。为了实现大规模可制造性,首先必须建立可重复性,使得集成电路中的每个组件具有相同的工作参数。传统上,调制掺杂结构已用于量子电子器件,因为其易于制造。然而,随机分布的电离供体的背景静电势大大降低了可重复性 7,8。这种内在的可变性可以通过利用完全未掺杂的结构来避免,通过对金属顶栅施加适当的偏置将电荷载流子限制在异质界面处 9-12 。这些结构有许多优点,包括提高迁移率 13 、提高热循环特性 14 ,以及我们将在这里展示的量子传输特性的优越性。量子点接触是连接两个二维储层的窄一维通道,是最简单的栅极定义量子装置类型,使其成为研究可重复性 7,15,16 的理想选择。我们首先问一个问题:如果在同一晶圆上制造几个相同的装置,它们会表现出相同的行为吗?为了研究这个问题,我们在调制掺杂和未掺杂的晶圆上制造了 18 个名义上相同的 QPC,并观察定义和夹断一维通道所需的栅极偏置。我们还研究了 QPC 通道内电导量子化和静电势的均匀性,以及热循环下的可重复性。为了进行比较,我们还研究了空穴 QPC 中的可重复性。基于 III-V 半导体系统的空穴量子器件最近引起了广泛关注,因为它们