模块1:线性代数简介(8个讲座)向量,向量空间,线性独立性,碱基和维度,正交性,线性图和矩阵,矩阵的基本子空间,rank-nullity Theorem。模块2:光谱分解(6个讲座)特征值,不变子空间,内部产物,规范,正统碱基,光谱定理,等法,极值和奇异值分解,应用。模块3:矩阵(5个讲座)特殊矩阵,规范和决定因素的特性。模块4:概率简介(6个讲座)经典和公理概率,概率空间,条件概率和独立性,总概率,贝叶斯规则。模块5:随机变量(8个讲座)定义,常见示例,累积分布函数,概率质量函数,概率密度函数;随机变量的函数;期望 - 卑鄙,差异和时刻;特征和瞬间的功能;特殊的随机变量 - 二项式,泊松,统一,指数和高斯;共同时刻,有条件的期望;协方差和相关性 - 独立,不相关和正交随机变量;两个随机变量的函数;大量法律和中央限制定理的法律薄弱。模块6:随机过程简介(3个讲座)离散和连续时间过程;随机过程的概率结构;卑鄙,自相关和自相关功能;随机过程的示例:白噪声。文本/参考书:
AI6101:应用统计和概率 [3 1 0 4] 统计学基础:统计学在工程中的作用、基本原理、回顾性研究、观察性研究、设计实验、随时间观察过程、机械和经验模型、概率和概率模型、集中趋势测量:平均值、中位数和众数、离散度测量-范围、四分位差、平均差、标准差、变异系数、偏度、峰度。概率分布:样本空间和事件、概率的解释和公理、加法规则、条件概率、乘法和总计、概率规则、贝叶斯定理、随机变量、随机变量的概念、伯努利分布、二项分布、泊松分布、正态分布。相关性和回归:概念和类型、卡尔·皮尔逊方法、秩斯皮尔曼方法、最小二乘法、离散随机变量和概率分布。连续随机变量和概率分布。联合概率分布。假设检验:假设检验、零假设和备择假设、显著性水平、单尾和双尾检验、大样本检验(单均值检验、均值差检验、单比例检验、比例差检验)、t 检验、F 检验、卡方检验。参考文献:
比例并根据统计检验的结果得出结论。使用数字理论设计各种密码。将图理论应用于网络路由问题等实时问题。单元I:基本概率和随机变量:随机实验,样本空间事件,概率的概念概率的公理,一些有关概率分配的重要定理,条件性概率定理,对条件性概率,独立事件,独立事件,贝叶斯定理或规则。随机变量,离散概率分布,随机变量的分布函数,离散随机变量的分布函数,连续随机变量单元II:抽样和估计理论:种群和样本,使用和不替换随机示例进行统计推理采样,随机数量量级统计分布,频率分布,相对频率分布,相对分布,计算,计算,计算,均值分布,计算,计算,计算,计算。公正的估计值和有效估计点估计值和间隔估计值。可靠性置信区间的人口参数估计,最大似然估计单元III:假设和意义的检验:统计决策统计假设。null假设假设测试和I型和II型误差的显着性和II型误差的显着性测试水平,涉及正态分布的一尾和两尾测试P值的特殊样本的特殊测试特殊测试的特殊样本具有估算理论和假设测试特征曲线之间的小样本关系的特殊显着性测试。测试质量控制图的功率将理论分布拟合到样本频率
3为了使符号简单,我们不会区分随机变量及其实现,除非在期望的情况下,我们指出了带有HAT的随机变量。例如,e p(x)f(ˆ x,z)是关于从分布p(x)绘制的随机变量X的期望,其实现值z被视为参数。4分布q(y)的熵为-p y q(y)ln q(y)。我们在整个论文中应用标准约定0 ln 0 = 0。5我们假设Q包含至少一个分布q(x,z),以便q(x)= q 0(x),其支持是p(x,z)支持的子集。然后确保优化器的存在。此分布实现了至少达到此值的有限值和一组可行分布。由于该集合的目标是连续的,因此解决方案存在。请注意,supp(q 0(x))⊆supp(p(x))意味着代理不能用q 0绘制的数据来反驳模型p。
3为了使符号简单,我们不会区分随机变量及其实现,除非在期望的情况下,我们指出了带有HAT的随机变量。例如,e p(x)f(ˆ x,z)是关于从分布p(x)绘制的随机变量X的期望,其实现值z被视为参数。4分布q(y)的熵为-p y q(y)ln q(y)。我们在整个论文中应用标准约定0 ln 0 = 0。5我们假设Q包含至少一个分布q(x,z),以便q(x)= q 0(x),其支持是p(x,z)支持的子集。然后确保优化器的存在。此分布实现了至少达到此值的有限值和一组可行分布。由于该集合的目标是连续的,因此解决方案存在。请注意,supp(q 0(x))⊆supp(p(x))意味着代理不能用q 0绘制的数据来反驳模型p。
这些课程与EE课程中的核心课程具有显着的重叠(> 60%)。因此,普通的EE学生不应根据任何“选修”类型选择他们。但是,允许替换后的BTECH电气工程和分支更换器进入EE。这有助于改变分支机构,以迅速赶上第一学期的错过课程。1。EE1101电路和网络分析可以用EE1102-BASIC电气工程取代2。 EE1201数字系统可以用EE1202数字电路代替3。 EE1205信号和系统可以用EE1206线性系统和信号处理代替。 4。 EE2102验证性和随机过程可以用EE2103验证性和随机变量代替。 3。 a)不允许的课程列表,因为EE BTECH学生的部门选修课EE1101电路和网络分析可以用EE1102-BASIC电气工程取代2。EE1201数字系统可以用EE1202数字电路代替3。 EE1205信号和系统可以用EE1206线性系统和信号处理代替。 4。 EE2102验证性和随机过程可以用EE2103验证性和随机变量代替。 3。 a)不允许的课程列表,因为EE BTECH学生的部门选修课EE1201数字系统可以用EE1202数字电路代替3。EE1205信号和系统可以用EE1206线性系统和信号处理代替。 4。 EE2102验证性和随机过程可以用EE2103验证性和随机变量代替。 3。 a)不允许的课程列表,因为EE BTECH学生的部门选修课EE1205信号和系统可以用EE1206线性系统和信号处理代替。4。EE2102验证性和随机过程可以用EE2103验证性和随机变量代替。 3。 a)不允许的课程列表,因为EE BTECH学生的部门选修课EE2102验证性和随机过程可以用EE2103验证性和随机变量代替。3。a)不允许的课程列表,因为EE BTECH学生的部门选修课
浓度不平等作为许多独立随机变量功能的尾巴概率上的上限。在组合优化问题上说明了浓度不平等的范围。详细描述了伯恩斯坦不等式的路径,强调了一个事实,即随机变量的对数宽带变换上的良好界限为尾巴概率提供了指数界限。本课程的主要主题将是伯恩斯坦式不平等的推导,用于一般功能。martingales方法提供了构建伯恩斯坦样不平等的一般配方。与Martingales相关的指数性超级马丁甲公司以有限的增量相关联,可以重新确定著名的有限差异不平等。尽管并且由于其普遍性,但使用Martingale方法可能很难。这促使搜索更具用户友好的方法,例如(例如)熵方法。Efron-Stein不等式说明了熵方法中的第一步。后者的不等式在独立随机变量的一般函数的方差上提供了一般且通常很紧的上限。在组合优化问题上首先说明了Efron-Stein结合。
信道的 Holevo 信息可以用以下方案定义:Alice 将经典随机变量 X 的信息编码为量子态,该变量在 X 中的值服从概率分布 pX,使用一组状态 { ρ x } x ∈X 。为了跟踪经典随机变量但用量子力学公式表示一切,我们认为 Alice 保存着她编码的信息的“笔记本”,我们可以将其建模为使用正交基 {| x ⟩} x ∈X 将该信息存储在另一个寄存器 N 中。从这个“笔记本”寄存器 N 中,可以完全恢复 X 的经典信息。总之,Alice 准备了二分态 ρ NA = X
摘要 — 信息瓶颈函数给出了在将 X 压缩为新随机变量 W 且与 X 的剩余相关性有界的情况下,某个随机变量 X 和某个边信息 Y 之间相关性的最佳保存程度的度量。因此,信息瓶颈在机器学习、编码和视频压缩中有着许多自然的应用。计算信息瓶颈的主要目标是找到 W 上的最佳表示。这在原则上可能非常复杂,但幸运的是,已知 W 的基数可以限制为 |W| ≤|X| +1,这使得有限 |X| 的计算成为可能。现在,对于许多实际应用,例如在机器学习中,X 代表一个潜在的非常大的数据空间,而 Y 来自一组相对较小的标签。这就提出了一个问题,在这种情况下是否可以改进已知的基数界限。我们表明,信息瓶颈函数总是可以近似为误差 δ ( ϵ, |Y| ),基数为 |W| ≤ f ( ϵ, |Y| ) ,其中明确给出了近似参数 ϵ > 0 的函数 δ 和 f 以及 Y 的基数。最后,我们将已知的基数界限推广到一些随机变量代表量子信息的情况。