在本文中,我们提出了一种针对定向无环图(DAG)的新假设测试方法。虽然有大量的DAG估计方法,但DAG推理解决方案的相对匮乏。此外,现有方法通常施加一些特定的模型结构,例如线性模型或加性模型,并假设独立的数据观察结果。我们提出的测试允许随机变量之间的关联是非线性的,并且数据与时间有关。我们基于一些高度灵活的神经网络学习者进行测试。我们建立了测试中的渐近保证,同时允许每个受试者的受试者数量或时间点差异到无穷大。我们通过模拟和大脑连接网络分析来证明测试的功效。
人工智能(AI)和数据科学(DS)需要强大的数学基础,才能清楚地理解,简洁地表达,并严格地创新了上世纪在AI/DS广阔领域发展的算法和框架的大量算法和框架。本课程重新审视并重建了其中的一些数学基础,以进行严格的研究,直观的理解,对算法的正式交流以及在AI/DS中表达未来。本课程将概率和统计数据的基本概念与AI和计算机科学的应用有关。主题包括概率理论的基础,离散和连续的随机变量,抽样分布,大数量定律,中心极限定理,点估计,置信区间,假设检验和回归分析。2。编程简介
数据的统计分析:随机变量;概率和概率分布的原则;假设检验的基本概念;平均值的标准误差;置信区间;曲线拟合;精确测试拟合优度;功率分析;卡方测试拟合优度; G-Test拟合优度;卡方独立性测试;独立的G检验;学生的t检验用于一个样本;学生的t检验,用于两个样本;配对t检验; Wilcoxon签名式测试;相关和线性回归;斯皮尔曼的等级相关;多重回归;卡尔曼过滤器;这些统计测试的动手python培训
描述:我只是看到了乔治·华盛顿骑着恐龙的照片,在火星的表面上,但是它们是怎么得到的呢?摄影尚未发明,恐龙和乔治·华盛顿在同一时间没有居住,火星很远。这是生成建模的一个极端例子,我们假设数据具有基本的分配。结合了监督的学习和无监督的学习,由此产生的范式称为“深层生成建模”,它利用生成的观点来感知周围的世界。假设每个现象都是由一个基本的一般过程驱动的,该过程定义了在随机变量及其随机相互作用的关节分布,即事件的发生方式以及以什么顺序发生。该课程的最终目的是
APL101 工程应用中的应用数学 3 学分 (3-0-0) 常微分方程:二阶 ODE、待定系数法、参数变异、Strum-Liouville 特征值问题、差分方程。偏微分方程:PDE 的分类、热、波和拉普拉斯方程、分离变量以解决 PDE。傅里叶变换:傅里叶正弦变换、傅里叶余弦变换、解决 ODE 和 PDE 的技术。概率论:概率公理、条件概率、随机变量、工程系统中的不确定性、离散和连续分布、分布函数、联合概率分布、矩、协方差、相关系数。随机过程:随机过程的定义、随机 FE 模型、平稳过程、马尔可夫链、泊松过程。
即使经过多年对随机增长模型(如首次和最后一次渗透和定向聚合物)的研究,许多问题在技术上仍然是神秘的或遥不可及的。例如,除了保证通过时间/自由能的线性增长率的基本形状定理之外,还存在亚线性波动,其渐近性尚未建立。即使在平面设置中,对于该设置,推测图景很清晰,但一般工具远不能使其严格。这与可积模型形成鲜明对比,可积模型的波动指数只是已证明的一小部分。在本文中,我们考虑了三个广泛研究的随机增长模型:首次渗透(FPP)、最后一次渗透(LPP)和随机环境中的定向聚合物。虽然这些模型在衡量增长的方式上有所不同,但它们都拥有一个大数定律,即增长率是渐近线性的。然而,更神秘的是亚线性波动。在二维版本中,这些模型被认为属于 Kardar–Parisi–Zhang 普适性类 [30],尤其是增长涨落的阶数为 n 1 / 3。除了 LPP 和定向聚合物具有精确可溶性的特殊情况外,严格的结果与这一目标相去甚远,在某些情况下甚至不存在。本文的目标有两个。首先,我们描述一种通用策略,用于证明随机变量序列(在定义 2.1 中明确定义)涨落阶的下界。该方法改编自第二作者最近在 [23] 中开发的技术。它很通用,因为它可以用于由独立同分布随机变量组成的各种问题,其中不对这些变量的共同分布做出任何假设。其次,我们应用该方法研究平面 FPP、LPP 和定向聚合物的生长涨落。在这三种情况下,我们都能证明 √ log n 阶波动的下限。此外,对于 FPP,我们扩展了形状
cation TE SE CC Dist contact 1 NQ R2021011 数学-III Dr.D.Ratna Babu 教授 博士 13 13 KT KRI 9000976638 2 NQ R2021011 数学-III Dr.R.Leela Vathi 助理教授 博士 10 6 HP KRI 9383455555 3 NQ R2021042 开关理论与逻辑设计 Dr K Srinivasa Rao 教授 博士 20 6 8T KRI 9494379031 4 NQ R2021043 信号与系统 Dr.T Lakshmi Narayana 副教授 博士 11 9 HP KRI 8686000546 NQ R2021044 随机变量与随机过程 Dr S Srigowri 教授 博士29 13 X4 KRI 7093322366 6 NQ R2021422 使用 Java 的面向对象编程 Dr.A.Radhika 副教授 博士 23 9 X4 KRI 9885986856 7 49 R2021011 数学-III Dr B Mahaboub 教授 博士 24 15 F0 PKS 8465977870 8 49 R2021011 数学-III Dr K Srinivas 教授 博士 28 28 8A PKS 9908786858 9 49 R2021041 电子器件与电路 Dr DVN Sukanya 副教授 博士 18 18 F0 PKS 9032869703 10 49 R2021042 开关理论与逻辑设计 Dr A Ranganayakulu 教授 博士 30 20 JU PKS 6281311010 11 49 R2021043 信号与系统 Dr M Ratnababu 教授 博士 17 10 F0 PKS 8074506708 12 49 R2021044 随机变量与随机过程 Dr P Srinivasulu 教授 博士 19 19 35 PKS 9676136356 13 7W R2021011 数学-III Dr. D Naga Bhargavi 助理教授 博士 18 18 NN GTR 9490514627
摘要:在现实生活中,由于各种测量局限性,登革热流行模型中的所有变量都可以测量。因此,需要一个工具来估计具有已知相关变量的未测量变量。估计非线性系统中变量的一种方法是扩展的卡尔曼滤波器(EKF)。接下来,使用这些估计的结果,将以疫苗接种的形式寻求最佳控制,以减少感染的数量。从仿真结果中可以得出结论,登革热模型的EKF状态估计足以估计在所选的干扰协方差范围内被随机变量干扰的状态。然后,发现干扰的标准偏差越小,开始时所需的最佳控制越小。因此,破坏越大,所花费的成本越大。