本论文由 EliScholar(耶鲁大学学术出版数字平台)免费开放供您阅读。该论文已被 EliScholar(耶鲁大学学术出版数字平台)的授权管理员接受,并被收录到耶鲁大学艺术与科学研究生院论文中。如需更多信息,请联系 elischolar@yale.edu。
二维电子气 (2DEG) 可在某些氧化物界面处形成,为创造非凡的物理特性提供了肥沃的土壤。这些特性可用于各种新型电子设备,例如晶体管、气体传感器和自旋电子器件。最近有几项研究展示了 2DEG 在电阻式随机存取存储器 (RRAM) 中的应用。我们简要回顾了氧化物 2DEG 的基础知识,强调了可扩展性和成熟度,并描述了从外延氧化物界面(例如 LaAlO 3 /SrTiO 3 )到简单且高度可扩展的非晶态-多晶系统(例如 Al 2 O 3 /TiO 2 )的最新发展趋势。我们批判性地描述和比较了基于这些系统的最新 RRAM 设备,并强调了 2DEG 系统在 RRAM 应用中的可能优势和潜力。我们认为当前的挑战是围绕从一个设备扩展到大型阵列,其中需要在串联电阻降低和制造技术方面取得进一步进展。最后,我们列出了基于 2DEG 的 RRAM 所带来的一些机遇,包括增强的可调性和设计灵活性,这反过来可以为多级功能提供优势。
b'摘要。我们提出了用于解决随机子集和实例的新型经典和量子算法。首先,我们改进了 Becker-Coron-Joux 算法 (EUROCRYPT 2011),将 e O 2 0 . 291 n 降低到 e O 2 0 . 283 n,使用更一般的表示,其值在 {\xe2\x88\x92 1 , 0 , 1 , 2 } 中。接下来,我们从几个方向改进了该问题的量子算法的最新技术。通过结合 Howgrave-Graham-Joux 算法 (EUROCRYPT 2010) 和量子搜索,我们设计了一种渐近运行时间为 e O 2 0 的算法。 236 n ,低于 Bernstein、Je\xef\xac\x80ery、Lange 和 Meurer (PQCRYPTO 2013) 提出的基于相同经典算法的量子行走成本。该算法的优势在于使用带有量子随机存取的经典存储器,而之前已知的算法使用量子行走框架,需要带有量子随机存取的量子存储器。我们还提出了用于子集和的新量子行走,其表现优于 Helm 和 May (TQC 2018) 给出的先前最佳时间复杂度 e O 2 0 . 226 n 。我们结合新技术达到时间 e O 2 0 . 216 n 。这个时间取决于 Helm 和 May 形式化的量子行走更新启发式方法,这也是之前的算法所必需的。我们展示了如何部分克服这种启发式方法,并获得了一个量子时间为 e O 2 0 的算法。 218 n 只需要标准的经典子集和启发式方法。'
程序存储器是太空应用的关键组件。它们永久存储在微控制器上执行的程序或现场可编程门阵列 (FPGA) 的配置数据。它们在可靠性、容错性和抗辐射性方面具有最严格的要求。欧盟资助的 MNEMOSYNE 项目旨在展示新一代具有串行接口的抗辐射高密度非易失性程序存储器。该技术将基于最先进的商用嵌入式磁性 RAM,采用 22 nm FD-SOI 工艺。如果成功,该项目将推出第一款密度高于 64 Mb 的抗辐射非易失性程序存储器,用于太空应用。存储器是太空应用的关键组件。它们可分为三种类型:大容量、高速缓存和程序存储器。后者永久存储可作为 MCU 启动存储器或 FPGA 配置非易失性存储器 (NVM) 执行的程序。在太空应用中,程序存储器是需要最高可靠性、零错误容忍度和最高辐射强度的存储器,因为它与系统上电直接相关。另一方面,随着系统性能要求的提高,集成电路(IC)越来越密集。最近的太空程序存储器需要更高的速度和密度。例如,欧洲辐射硬化 FPGA BRAVE NG-Medium 至少需要 13Mb 的配置。下一代 NG-large 和 NG-Ultra 将需要 128Mb 和高达 512Mb 的高速、低引脚数配置存储器。目前,对于这种关键存储器,没有可用的欧洲辐射硬化存储器组件。MNEMOSYNE 项目旨在基于最先进和成熟的欧洲商用 22 nm FDSOI 磁性 RAM (MRAM) 技术开发(设计和原型)新一代具有串行接口的辐射硬化高密度 NVM。得益于 FDSOI 半导体结构,该工艺自然提供了良好的辐射耐受性。此外,MRAM 技术天然具有 SEU 免疫力。关键创新包括:• 第一个密度高于 1Mb 的欧洲 RHBD(抗辐射设计)空间 NVM;• 第一个密度高于 16Mb 的全球 RHBD 空间 NVM;• 第一个采用低于 65nm 工艺的欧洲嵌入式 RHBD 高性能空间 NVM IP 核;• 第一个用于空间应用的新一代自旋转移力矩 (STT) MRAM;• 第一个在 22nm FDSOI 上应用于数字和模拟 IP 的 RHBD,用于缓解 TID 和 SEE;高密度 MRAM 的开发将重塑航天工业及其他领域的整个存储器芯片市场。
摘要。在 EUROCRYPT 2020 上,Hosoyamada 和 Sasaki 提出了第一个专门针对哈希函数的量子攻击——反弹攻击的量子版本,利用概率太低而无法在经典环境中使用的微分。这项工作为哈希函数抵御量子攻击的安全性开辟了一个新视角。特别是,它告诉我们,对微分的搜索不应止步于经典的生日界限。尽管这些有趣且有希望的含义,但 Hosoyamada 和 Sasaki 描述的具体攻击利用了大型量子随机存取存储器 (qRAM),这种资源在可预见的未来是否可用即使在量子计算界也存在争议。如果没有大型 qRAM,这些攻击会导致时间复杂度显著增加。在这项工作中,我们通过执行基于具有非全活动超级 S 盒的微分的量子反弹攻击来减少甚至避免使用 qRAM。在此过程中,提出了一种基于 MILP 的方法来系统地探索针对反弹攻击的有用截断差分的搜索空间。 结果,我们获得了对 AES - MMO 、 AES - MP 的改进攻击,以及对 4 轮和 5 轮 Grøstl - 512 的第一个经典碰撞攻击。 有趣的是,在 AES - MMO 的分析中使用非全活动超级 S 盒差分会导致收集足够起点的新困难。 为了克服这个问题,我们考虑涉及两个消息块的攻击以获得更多的自由度,并且我们成功地将对 AES - MMO 和 AES - MP (EUROCRYPT 2020) 的碰撞攻击的 qRAM 需求从 2 48 压缩到 2 16 到 0 的范围,同时仍然保持可比的时间复杂度。据我们所知,这是第一次专门针对哈希函数的量子攻击,其性能略优于 Chailloux、Naya-Plasencia 和 Schrottenloher 的通用量子