摘要近年来,量子计算机和Shor的量子算法对当前主流非对称加密方法构成了威胁(例如RSA和椭圆曲线密码学(ECC))。因此,有必要构建量子后加密(PQC)方法来抵抗量子计算攻击。因此,本研究提出了一个基于PQC的神经网络,该神经网络将基于代码的PQC方法映射到神经网络结构上,并提高具有非线性激活功能,密文的随机扰动以及Ciphertexts均匀分布的密封性遗迹的安全性。在实际实验中,本研究使用蜂窝网络信号作为案例研究,以证明基于PQC的基于PQC的神经网络可以进行加密和解密,并具有密文的均匀分布。将来,提出的基于PQC的神经网络可以应用于各种应用程序。关键字:量词后密码学,McEliece密码学,神经网络
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
摘要 目的 . 脑机接口 (BCI) 有可能为患有神经系统疾病、说话肌肉无力的患者的言语能力保留或恢复。然而,成功训练低延迟语音合成和识别模型需要将神经活动与预期的语音或声学输出以高时间精度对齐。这对于无法发出可听见的言语的患者来说尤其具有挑战性,因为没有可以用于精确定位与言语同步的神经活动的基本事实。方法 . 在本研究中,我们提出了一种用于神经语音活动检测 (nVAD) 的新型迭代算法,称为迭代对齐发现动态时间规整 (IAD-DTW),该算法将 DTW 集成到深度神经网络 (DNN) 的损失函数中。该算法旨在发现患者的皮层脑电图 (ECoG) 神经反应与他们在收集数据以训练 BCI 解码器进行语音合成和识别期间说话尝试之间的对齐方式。主要结果 .为了证明该算法的有效性,我们测试了它在预测健全且有完整言语能力的患者产生的声音信号的开始和持续时间的准确性,这些患者正在接受癫痫手术的短期诊断性 ECoG 记录。我们通过随机扰动神经活动与所有言语开始和持续时间的初始单一估计之间的时间对应关系来模拟缺乏基本事实的情况。我们检查了模型克服这些扰动以估计基本事实的能力。在这些模拟中,即使在语音和静默之间存在最大错位的情况下,IAD-DTW 的性能也没有明显下降(准确度绝对下降 < 1%)。意义。IAD-DTW 计算成本低,并且可以轻松集成到现有的基于 DNN 的 nVAD 方法中,因为它只与最终的损失计算有关。这种方法使得使用无法产生可听言语的患者(包括患有闭锁综合症的患者)的 ECoG 数据来训练语音 BCI 算法成为可能。