11个产生遵循非均匀分布的数字或信号的项目在本文档中不考虑RNG。(例如,高斯和类似的噪声发生器不被视为RNG。)这些项目中的许多通常是通过随机提取技术来得出均匀的随机行为整数的来源(请参阅“种子生成”)。例如,即使它们是从均匀的分布中采样的,在这里不考虑产生浮点数的项目。一个示例是DSFMT算法,该算法最终使用了伪和整数的生成器。12标准(例如FIPS 200)和ISO/IEC 27000家庭在此使用的意义上处理信息安全。13标准(例如FIPS 200)和ISO/IEC 27000家庭与此处使用的信息安全性交易。
当丢失的过程取决于丢失的值本身时,需要在基于可能的基于可能性的suplce时明确建模并考虑到它。,我们提出了一种在丢失过程取决于丢失的数据的情况下构建和拟合深层变量模型(DLVM)的方法。特别是,深层神经网络使我们能够显着建模给定数据的缺失模式的条件分布。这允许对缺失类型的先验信息(例如,自我审查)进入模型。我们的推理技术基于重要性加权推断,涉及最大化关节可能性的下限。通过在潜在空间和数据空间中使用重新聚集技巧来获得界限的随机梯度。我们在各种数据集和缺少的模式上显示,明确建模丢失过程是无价的。
小型网络确实存在基于KDC的session-key生成方法的替代方法。替代方案包括在网络的每个节点上存储“主”键与网络中其他n个节点进行私人通信所需的“主”键。因此,每个节点将存储n -1此类键。如果网络中来回穿梭的消息短,则可以直接使用这些键进行加密。但是,当消息是任意长度时,网络中的节点a可以使用另一个节点b的主键来设置会话密钥,然后随后使用会话键来实际加密消息。
基于量子力学的随机数生成器 (RNG) 因其安全性和不可预测性而引人注目,与传统生成器(如伪随机数生成器和硬件随机数生成器)相比。这项工作分析了一类半设备独立的量子 RNG 中,随着希尔伯特空间维数、状态准备子空间或测量子空间的增加,可提取随机性的数量的变化,其中限制状态重叠是核心假设,建立在准备和测量方案之上。我们进一步讨论了这些因素对复杂性的影响,并得出了最佳方案的结论。我们研究了时间箱编码方案的一般情况,定义了各种输入(状态准备)和结果(测量)子空间,并讨论了获得最大熵的最佳方案。对几种输入设计进行了实验测试,并分析了它们可能的结果安排。我们通过考虑设备的缺陷,特别是探测器的后脉冲效应和暗计数来评估它们的性能。最后,我们证明这种方法可以提高系统熵,从而产生更多可提取的随机性。
基于量子力学的抽象随机数生成器(RNG)由于其安全性和与常规发电机相比的安全性和不可预测性而引人注目,例如pseudo-random编号生成器和硬件随机数字生成器。这项工作分析了可提取量的随机性的演变,并增加了希尔伯特空间维度,状态制备子空间或测量子空间中的一类半脱位独立量子RNG,其中界定状态的重叠是核心假设,是基于准备和测量方案的核心假设。我们进一步讨论了这些因素对复杂性的影响,并在最佳场景上得出结论。我们研究了定义各种输入(状态准备)和结果(测量)子空间的定义各种输入(状态准备)的通用情况,并讨论最佳场景以获得最大的熵。对几种输入设计进行了实验测试,并分析了其可能的结果布置。我们通过考虑设备的缺陷来评估他们的性能,尤其是检测器的后脉冲效果和黑暗计数。最后,我们证明了这种方法可以增强系统熵,从而导致更可提取的随机性。
量子随机数生成器 (QRNG) 承诺生成完全不可预测的随机数。然而,以随机模型形式对随机数进行安全认证通常会引入难以证明或不必要的假设。两个重要的例子是将对手限制在经典机制中以及连续测量结果之间的相关性可以忽略不计。此外,不严格的系统特性会打开一个安全漏洞。在这项工作中,我们通过实验实现了一个不依赖于上述假设的 QRNG,其随机模型是通过严格的计量方法建立的。基于真空涨落的正交测量,我们展示了 8 GBit/s 的实时随机数生成率。我们的安全认证方法提供了许多实际好处,因此将在量子随机数生成器中得到广泛应用。特别是,我们生成的随机数非常适合当今的传统和量子加密解决方案。
nist IR 8446 IPD(首次公开草稿)2024年9月,在RNG比较SP 800-90系列和AIS 20/31
用于数据传输加密的加密算法提供了机密性,需要相当大的计算能力,并且在具有有限的计算能力的嵌入式系统中不常用,例如可编程逻辑控制器(PLC)。PLC是工业自动化中自动化和控制的核心组成部分。数十年来,PLC优先考虑速度而不是安全性; PLC中的程序执行必须尽可能高效。加密算法使用种子,初始化矢量,用加密量键加密数据以加强加密。伪随机数发生器(PRNG)可以用作初始化向量。本文提出了Xorasm PRNG算法,该算法是基于Xorshift的轻量级算法,并带有系统时钟的修改种子。应用的方法可以生成和可视化PRNG,测试随机性并在紧凑型PLC上实现PRNG。Xorasm进行统计评估。这项研究的发现是,p值表明Xorasm在统计学上是统计学和明显的随机性,并且有证据表明,Xorasm生成的数据分布实际上是在99.95%的置信度下随机的,适用于嵌入式系统中的实施,作为轻量级的PRNG。
摘要 - 伪随机数生成器(PRNG)是加密应用程序中的重要组件,为生成密钥,创建数字签名和确保安全通信提供了基础。本研究探讨了伪随机数的两种方法:根据国家标准技术研究所(NIST)规范,计数器模式确定性随机位发生器(CTR_DRBG)的实现,以及基于混乱的伪随机数字生成器。CTR_DRBG实施使用了256位的种子,并遵循严格的NIST指南,确保抵抗蛮力和隐次攻击。相比之下,基于混乱的方法利用混乱的动力学来基于256位键有效地产生高质量的随机值。通过优化参数并引入一个随机位生成的阈值,我们证明了基于混乱的生成器可以实现出色的随机性和统计属性。