1 浙江省重点实验室,杭州 311121;20112020109@fudan.edu.cn (YL);qhu@mail.ustc.edu.cn (QH);hanyk@zhejianglab.com (YH);pengb806@nenu.edu.cn (BP);jianghaijun@zhejianglab.com (HJ) 2 复旦大学微电子学院,上海 200433;xuexiaoyong@fudan.edu.cn 3 中国科学技术大学微电子学院,合肥 230026;wuqiqiao@mail.ustc.edu.cn (QW);xuanzhi@mail.ustc.edu.cn (XL); chengjinhui@mail.ustc.edu.cn (JC) 4 中国科学院微电子研究所微电子器件集成技术重点实验室,北京 100029,中国;zhaoyulin@ime.ac.cn (YZ);zhangdonglin20@mails.ucas.ac.cn (DZ);hanzhongze@ime.ac.cn (ZH);dingqingting@ime.ac.cn (QD);lvhangbing@ime.ac.cn (HL) * 通讯地址:yangjianguo@ime.ac.cn;电话:+86-10-82995585
资源受限的设备越来越多地使用,这些设备内存更少、计算资源更少、电源更少,这促使人们采用轻量级密码术来提供安全解决方案。ASCON 是 NIST 轻量级密码术竞赛的决赛入围者,GIMLI 是第二轮候选者。ASCON 是一种基于海绵函数的认证加密 (AE) 方案,适用于高性能应用。它适用于物联网 (IoT) 等环境,在这种环境中,大量非常受限的设备与高端服务器通信。缺点是可能出现统计无效故障攻击 (SIFA) 和子集故障分析 (SSFA) 等故障分析。GIMLI 也是一种基于海绵函数的 AE 方案,易受 SIFA 攻击。在这项工作中,我们修改了 ASCON 128a 和 GIMLI,利用元胞自动机 (CA) 的伪随机特性来防止这些攻击。我们分析并表明这些攻击不适用于增强密码。
受监控的量子系统经历其汉密尔顿量控制参数的循环演化,积累的几何相位取决于系统演化时所遵循的量子轨迹。相位值将由幺正动力学和系统与环境的相互作用决定。因此,由于随机量子跳跃的发生,几何相位将获得随机特性。在这里,我们研究受监控量子系统中几何相位的分布函数,并讨论何时/是否提出用于测量开放量子系统中几何相位的不同量代表分布。我们还考虑了一个受监控的回声协议,并讨论了在哪些情况下实验中提取的干涉图案的分布与几何相位相关。此外,对于没有量子跳跃的单个轨迹,我们揭示了在一个循环后获得的相位中的拓扑转变,并展示了如何在回声协议中观察到这种关键行为。对于相同的参数,密度矩阵不显示任何奇异性。我们通过考虑一个典型案例来说明我们所有的主要结果,即在存在外部环境的情况下,自旋 1/2 沉浸在随时间变化的磁场中。然而,我们分析的主要结果相当普遍,并且在其定性特征上不依赖于所研究模型的选择。