蒙特克莱尔州立大学数字共享中心免费向您提供本论文,供您开放访问。蒙特克莱尔州立大学数字共享中心的授权管理员已接受本论文,将其纳入论文、学位论文和毕业设计中。如需更多信息,请联系 digitalcommons@montclair.edu。
操纵基因活性和控制转基因表达的能力对于研究基因功能至关重要。虽然对于秀丽隐杆线虫来说,有几种用于修改基因或分别控制表达的遗传工具,但是没有遗传方法可以产生既能破坏基因功能又能为表达被破坏基因的细胞提供遗传途径的突变。为了实现这一点,我们开发了一种基于 cGAL(一种用于秀丽隐杆线虫的 GAL4-UAS 二分表达系统)的多功能基因陷阱策略。我们设计了一个 cGAL 基因陷阱盒并使用 CRISPR/Cas9 将其插入目标基因中,从而创建一个双顺反子操纵子,该操纵子可同时在表达目标基因的细胞中表达截短的内源蛋白和 cGAL 驱动基因。我们证明我们的 cGAL 基因陷阱策略可以稳健地产生功能丧失的等位基因。将 cGAL 基因陷阱系与不同的 UAS 效应菌株相结合,使我们能够挽救功能丧失的表型,观察基因表达模式,并在时空上操纵细胞活动。我们表明,通过显微注射或基因杂交的重组酶介导的盒式交换 (RMCE),可以进一步在体内设计 cGAL 基因陷阱系,以轻松地将 cGAL 与其他二分表达系统的驱动器(包括 QF/QF2、Tet-On/Tet-Off 和 LexA)交换,以生成在同一基因组位置具有不同驱动器的新基因陷阱系。这些驱动器可以与它们相应的效应物结合以进行正交转基因控制。因此,我们基于 cGAL 的基因陷阱是多功能的,代表了秀丽隐杆线虫基因功能分析的强大遗传工具,这最终将为基因组中的基因如何控制生物体的生物学提供新的见解。
摘要 兴奋和抑制 (E/I) 之间的精细平衡对于大脑正常功能至关重要。GABA 能系统的紊乱会改变这种平衡,是各种神经系统疾病的共同特征,包括自闭症谱系障碍 (ASD)。磷酸酶和张力蛋白同源物 (PTEN) 的突变与 ASD 密切相关,PTEN 是磷脂酰肌醇 3-磷酸激酶/Akt 通路的主要负调节剂。然而,尚不清楚 PTEN 缺陷是否会对抑制和兴奋信号产生不同的影响。利用秀丽隐杆线虫的神经肌肉系统,其中兴奋性 (胆碱能) 和抑制性 (GABA 能) 输入都调节肌肉活动,我们发现 daf- 18 / PTEN 突变会影响 GABA 能(但不影响胆碱能)神经发育和功能。这种选择性影响导致抑制信号传导不足。在 daf- 18/PTEN 突变体中观察到的 GABAergic 系统中的缺陷是由于发育过程中 DAF- 16/FOXO 活性降低所致。生酮饮食 (KGD) 已被证明对与 E/I 失衡相关的疾病有效。然而,其作用机制在很大程度上仍然难以捉摸。我们发现,在早期发育过程中富含酮体 β -羟基丁酸的饮食会诱导 DAF- 16/FOXO 活性,从而改善 daf- 18/PTEN 突变体的 GABAergic 神经发育和功能。我们的研究为 PTEN 突变与神经发育缺陷之间的联系提供了宝贵的见解,并深入探讨了 KGD 潜在治疗效果的潜在机制。
根据与C242结合的化合物的确切性质抑制或促进结合。这让人联想到以前的工作报告,在P110的RBD中,单个残基的不同突变可以抑制(K227A)或激活(K227E)PI3K活性(6,27)。虽然抑制剂及其在癌症治疗中的可能作用是当前工作的主要重点,但RAS/PI3K相互作用的诱导者也可能具有激活PI3K 45
线粒体的结构和功能之间存在密切的相互作用。要理解这种复杂的关系,需要先进的成像技术来捕捉线粒体的动态特性及其对细胞过程的影响。然而,大部分关于线粒体动力学的研究都是在单细胞生物或体外细胞培养中进行的。在这里,我们介绍了一种用于实时成像秀丽隐杆线虫线粒体形态的新型遗传工具,以满足研究活体完整多细胞生物内细胞器动力学的先进技术的迫切需求。通过全面的分析,我们将我们的工具与现有方法直接进行比较,展示它们在可视化线粒体形态方面的优势,并对比它们对生物体生理学的影响。我们揭示了传统技术的局限性,同时展示了我们的方法的实用性和多功能性,包括内源性 CRISPR 标签和异位标记。通过提供根据实验目标选择最合适工具的指南,我们的工作推动了秀丽隐杆线虫的线粒体研究,并增强了不同成像模式的战略整合,以全面了解生物体内的细胞器动力学。
摘要 在秀丽隐杆线虫发育过程中,多个细胞会长距离迁移或伸展突起以到达最终位置和/或获得适当形状。Wnt 信号通路是细胞沿前后体轴迁移或细胞生长的主要协调者之一。Wnt 信号的结果受包括内吞作用在内的各种机制的微调。在本研究中,我们发现 SEL-5(哺乳动物 AP2 相关激酶 AAK1 的秀丽隐杆线虫直系同源物)与逆转录复合物一起在 QL 神经母细胞子细胞迁移过程中作为 EGL-20/Wnt 信号的正调节因子发挥作用。同时,SEL-5 与逆转录复合物的协同作用也是排泄道细胞生长所必需的。重要的是,SEL-5 激酶活性不是其在神经元迁移或排泄细胞生长中发挥作用所必需的,并且这两个过程都不依赖于 DPY-23/AP2M1 磷酸化。我们进一步确定,Wnt 蛋白 CWN-1 和 CWN-2 与 Frizzled 受体 CFZ-2 一起正向调节排泄细胞生长,而 LIN-44/Wnt 和 LIN-17/Frizzled 一起产生抑制其延伸的停止信号。
Caenorhabditis秀丽隐杆线虫是一种线虫,在世界各地的各种环境中自然存活。该线虫已被用作发展,癌症和衰老的模型系统,因为它与人类的关键基因和疾病中涉及的信号通路共享。此外,该线虫在实验室中易于维持,并且在遗传上是可探讨的。与秀丽隐杆线虫有关的与人类癌,先天免疫和寿命相关的主要发现,但该线虫尚未用于研究与口腔健康相关的基因或微生物群。世界上几个实验室开始研究肠道菌群对秀丽隐杆线虫健康的影响。我们建议通过喂养从人类唾液中分离出的线虫细菌来研究口腔菌群对秀丽隐杆线虫的影响。能够通过秀丽隐杆线虫分析的数据来表征人口腔菌群,可以提供一种方便的方法来筛查不同口腔细菌的快速影响,并可以为几种口腔疾病提供新的前景。
我们开发了一种用于 C. elegans 体积显微镜数据(静态或视频)的数据协调方法,包括标准化格式、数据预处理技术和一套基于人机交互机器学习的分析软件工具。我们将来自 5 个实验室的 118 个全脑神经活动成像数据集统一起来,将这些数据集和随附工具存储在一个名为 WormID (wormid.org) 的在线存储库中。我们使用此存储库生成统计图谱,该图谱首次实现了跨实验室的精确自动细胞识别,在某些情况下接近人类的表现。我们挖掘这个存储库以确定影响神经元发育定位的因素。为了方便大家使用这个存储库,我们创建了开源软件、代码、基于网络的工具和教程,以探索和管理数据集,为科学界做出贡献。该存储库为实验者、理论家和工具制造者提供了不断增长的资源,以研究不同实验范式中的神经解剖组织和神经活动,开发和基准测试自动神经元检测、分割、细胞识别、跟踪和活动提取的算法,并为神经生物学发育和功能模型提供信息。
抽象在时间和空间控制的积累中是microRNA(miRNA)在各种发育过程中的功能的基础。在秀丽隐杆线虫中,这是通过颞型mirnas lin-4和let-7的e x增强的,但是对于大多数miRNA,d e v elopmental e xpres-sion模式仍然很差。的确,e x ppermimentserv ed long fall liv es ma y限制了可能的动力学。在这里,我们在秀丽隐杆线虫中介绍了高胚胎发育的miRNA表达。我们使用数学模型来探索潜在的机制。对于Let-7,我们可以通过节奏转录和通过RNA结合蛋白LIN-28对前体处理的节奏转录和特定阶段的调节结合来解释并实验确认。相比之下,Se v eral其他miRNA的动态不能仅通过调节生产率来解释。具体而言,示出了振荡转录和miR-235的振荡性转录和rh ythmic deca y rh ythmic积累,这是其他动物中miR-92的直系同源的。我们证明,miR-235和其他miRNA的衰变取决于EBAX-1,以前与目标指导的miRNA降解有关(TDMD)。综上所述,我们的结果提供了对动态miRNA衰变的见解,并建立了研究d v elopmental功能和作用于miRNA的调节机制的资源。
de ci d ci de Maternals de Barcelonal(ICMAB-CSIC),UAB校园,Bellaterra,Bellaterra 08193,西班牙B alkek宏基因组学与微生物学研究中心,分子病毒学和分子病毒学和微生物学系 homico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain D University Aut `ONOMA DE BARCELONA, Biophysics Unit, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Avingua de Can Dom` Enech, 08193 Cerdanyola del Vall `Ex, Spain and Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1贝勒广场,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国医学院,维克 - 中心加泰罗尼亚大学(UVIC-UCC)(UVIC-UCC),西班牙08500 VIC,西班牙G研究所,加泰罗尼亚中部的生命科学与健康研究所Aut'Onoma de Barcelona,08193,西班牙贝拉特拉,I Deprodoment debioquímicai生物学分子,大学Aut ot'Onoma'Onoma de Barcelona,08193 Bellaterra,西班牙de ci d ci de Maternals de Barcelonal(ICMAB-CSIC),UAB校园,Bellaterra,Bellaterra 08193,西班牙B alkek宏基因组学与微生物学研究中心,分子病毒学和分子病毒学和微生物学系 homico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain D University Aut `ONOMA DE BARCELONA, Biophysics Unit, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Avingua de Can Dom` Enech, 08193 Cerdanyola del Vall `Ex, Spain and Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1贝勒广场,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国医学院,维克 - 中心加泰罗尼亚大学(UVIC-UCC)(UVIC-UCC),西班牙08500 VIC,西班牙G研究所,加泰罗尼亚中部的生命科学与健康研究所Aut'Onoma de Barcelona,08193,西班牙贝拉特拉,I Deprodoment debioquímicai生物学分子,大学Aut ot'Onoma'Onoma de Barcelona,08193 Bellaterra,西班牙