在有丝分裂过程中拆除了保护和组织基因组的核包膜。在秀丽隐杆线虫合子中,父母原核的核包络崩溃(NEBD)在有丝分裂过程中是空间和节气调节的,以促进母体和父亲基因组的统一。核孔复合物(NPC)拆卸是NEBD的决定性步骤,对于核通透性至关重要。通过结合实时成像,生物化学和磷蛋白质组学,我们表明NPC拆卸是一个逐步的过程,它可以将类似polo的激酶1(PLK-1)(PLK-1) - 依赖性和独立步骤。plk-1靶向多个NPC子分类,包括细胞质丝,中央通道和内环。PLK-1被募集到并磷酸化几种多价接头核孔蛋白的内在无序区域(IDR)。值得注意的是,尽管磷脂在人和秀丽隐杆线虫核孔之间并不保守,但它们位于这两个物种的IDR中。我们的结果表明,靶向多价接头核孔的IDR是有丝分裂过程中NPC拆卸的进化保守的驱动器。
由于现有农业供应链缺乏透明度,安全性,可靠性和可追溯性,因此满足35%的人类食品需求的小麦作物正面临几个问题。已经为农业供应链开发了许多系统来克服此类问题,但是,垄断集中控制是实现这种系统使用的最大障碍。,由于缺乏可追溯的供应链信息,它最终获得了消费者对品牌产品的信任,并拒绝了其他产品。本研究为供应链可追溯性提供了一个基于区块链的框架,为小麦作物提供了可信赖,透明,安全和可靠的服务。已经引入了一个名为小麦硬币(WC)的加密代币,以跟踪小麦供应链利益相关者之间的交易。此外,提出了WC,加密钱包和经济模型的初始硬币产品(ICO)。此外,已经设计了一种基于智能合同的交易系统,以实现小麦作物交易的透明度以及WC转换为菲亚特,反之亦然。我们已经开发了行星际文件系统(IPFS),以提高数据可用性,安全性和透明度,该数据可存储农民,企业和商人的私人数据。最后,实验的结果表明,与先前的农作物供应链解决方案相比,所提出的框架在添加块,每分钟交易,Trans-Action的平均气体电荷以及交易验证时间方面显示出更好的性能。用比特币和以太坊的性能分析显示了所提出的系统的出色性能。
摘要由PARP抑制剂(PARPI)引起的DNA捕获多-ADP-核糖聚合酶(PARP)触发急性DNA复制应激和合成杀伤力(SL)在BRCA2缺陷型细胞中。因此,DNA损伤被接受为BRCA2缺陷细胞中SL的先决条件。相反,我们在这里表明,抑制BRCA2缺陷型细胞中的岩石独立于急性补充应力触发SL。此类SL在细胞因子衰竭引起的多倍体和双核之前。这种初始有丝分裂异常之后是其他M相缺陷,包括后期桥和异常有丝分裂数字,与多极纺锤体,超纯中心体和多核核酸相关。sl还通过抑制citron rho Icteracting激酶触发,这是另一种与岩石相似的调节细胞因子的酶。一起,这些观察结果表明,细胞因子衰竭会触发BRCA2缺陷细胞中有丝分裂异常和SL。此外,通过早期有丝分裂抑制剂1(EMI1)耗竭来预防有丝分裂进入,增强了用岩石抑制剂处理的BRCA2缺乏细胞的存活,从而增强了BRCA2缺乏细胞中M期与细胞死亡之间的关联。这种新颖的SL与PARPI触发的SL不同,并发现有丝分裂是BRCA2缺陷型细胞的跟腱。
摘要 线粒体含有一个独立的基因组,称为线粒体 DNA (mtDNA),其中包含必需的代谢基因。尽管 mtDNA 突变发生频率很高,但它们很少被遗传,这表明生殖系机制限制了它们的积累。为了确定生殖系 mtDNA 是如何调控的,我们研究了秀丽隐杆线虫原始生殖细胞 (PGC) 中 mtDNA 数量和质量的控制。我们发现 PGC 结合多种策略来产生 mtDNA 数量的低点,方法是将线粒体分离成叶状突起,这些突起会被相邻细胞蚕食,同时通过自噬消除线粒体,使整体 mtDNA 含量降低两倍。当 PGC 离开静止状态并分裂时,mtDNA 会复制以维持每个生殖系干细胞约 200 个 mtDNA 的设定点。尽管同类相食和自噬会随机消除线粒体 DNA,但我们发现,独立于 Parkin 和自噬的激酶 PTEN 诱导激酶 1 (PINK1) 优先减少突变线粒体 DNA 的比例。因此,PGC 采用并行机制来控制种系线粒体 DNA 创始群体的数量和质量。
蛋白质和DNA甲基化参与了各种生物学功能,例如信号转移,DNA修复和基因表达。甲基转移酶的异常调节与多种类型的癌症有关,但与乳腺癌和肺癌中的自噬和癌变有关。我们利用了一种网络工具Ualcan从癌症基因组地图集进行投资乳房和肺癌数据库。我们发现乳腺癌和/或肺癌中有17种甲基转移酶上调。我们通过用间接甲基转移酶抑制剂抑制剂腺苷氨基氨基二氢化(Adox)来研究甲基化抑制对两种乳腺癌细胞系(MDA-MB-231和MCF-7)和两种肺癌细胞系(H292和A549)的影响。我们发现所有细胞系的迁移能力均降低,并且在ADOX处理后,MDA-MB-231,MCF-7和H292的生长速率也降低了。这些结果与MDA-MB-231,MCF-7和H292细胞系中自噬的抑制相关,因为Adox治疗引起ATG7的表达降低,降低了LC3-II/LC3-I的比率降低。这些发现表明,抑制细胞的甲基化能力可能是乳腺癌和肺癌治疗的潜在靶标。
不清楚。另一种策略是探索小鼠脑和人脑之间的相似性(Szegedi等,2020)。在单个神经元类型及其连接水平上,大脑由重复的构件组成,称为电路基序,这些基序包含互连兴奋性和抑制性神经元的组合。在自闭症和癫痫的小鼠模型中进行了许多研究,发现这些疾病与大脑的激发和抑制之间缺乏平衡有关(Nelson和Valakh,2015年)。在小鼠中已经对抑制性神经元的两种关键类型进行了很好的研究:白蛋白(PVALB)细胞,它们会迅速相关地靶向神经元,而生长抑制素(SST)细胞,这些细胞需要更长的时间(图1B; Blackman等,2013)。再说一次,这只是在小鼠中,还是在人类中也发现了具有PVALB或SST细胞的基序?现在,在Elife,Mean-Hwan Kim及其同事(总部位于艾伦脑科学研究所,华盛顿大学和瑞典神经科学研究所),报告说,人类和小鼠的抑制性电路主题非常相似(Kim等,2023)。建立了他们使用高通量转录组分析的最新工作(Bakken等,2021),研究人员比较了小鼠和人类皮质的细胞转录组。这揭示了超过70个基因,这些基因富含PVALB和SST细胞。这些基因中的许多基因与神经元之间的连接有关,这表明它们确定了这两种细胞类型的突触的特性。看到的类似细胞类型特异性遗传学
核孔(NUPS)组装核孔,形成核质和细胞质之间的渗透屏障。核苷也位于胞质灶中,提议充当孔隙组装中间体。在这里,我们表征了完整动物秀丽隐杆线虫中细胞质NUP灶的组成和发生率。我们发现,在年轻的非压力动物中,NUP灶仅出现在发育的精子,卵母细胞和胚胎,表达高水平核孔蛋白的组织。焦点是高度有粘性FG重复核苷(FG-Nups)的冷凝物,它们通过翻译后修饰和伴侣活性在细胞质中的溶解度极限接近其溶解度极限。只有一小部分FG-NUP分子集中在NUP灶中,后者在M期溶解,并且对于核孔组装而言是可分配的。核孔蛋白的凝结通过压力和增长而增强,并且在后有丝分裂神经元中单个FG-NUP的过表达足以诱导异位凝结和生物麻痹。我们推测NUP焦点是非必需的且潜在的毒性冷凝物,其组装在健康细胞中被积极抑制。
经过数十年的研究,我们对癌症机制的复杂性的了解(优雅地总结为“癌症的标志”)正在扩大,这种知识带来的治疗机会也在扩大。然而,癌症仍然需要深入研究以减少其巨大影响。在这种情况下,使用简单的模型生物(例如秀丽隐杆线虫),其中发现了凋亡途径的遗传学,可以促进对几种癌症标志的研究。可用于遗传和药物筛查,方便快速有效的基因组编辑,并与伦理动物研究的3RS(“替代,减少和改进”)原理保持一致,秀丽隐杆线虫在揭示癌症机制的复杂网络中起着重要的作用,并在癌症机制中提出了有希望的选择。
图5。TARDIS启动子库。a)概述两个分裂的着陆垫及其相关的启动子插入向量。正确整合后,选择性标记和荧光团表达都会恢复。b)从单个TARDIS阵列线的单个热轴(PX819)中回收了9个基因的转录记者。集成到单个McSarlet-I /Hygr着陆垫中。主图像显示了指定的报告基因的MSCARLET-I表达,而插图显示同一区域的极化图像。c)示例同时,从单个TARDIS阵列中的双重整合到带有害虫的双降落垫菌株中。ceh-10p :: mneongreen :: pest是假彩色绿色和ceh-40p :: mcarlet-i :: pest是假彩色的洋红色。所有比例尺均代表20µm
寄生线虫对人类和动物的健康构成了重大威胁,并在农业部门造成经济损失。使用驱虫药物(例如伊维菌素(IVM))来控制这些寄生虫的使用导致了广泛的耐药性。识别寄生线虫中抗药性的遗传标记可能具有挑战性,但是秀丽隐杆线虫的自由生活的Nema-Tode Caenorhabditis提供了合适的模型。在这项研究中,我们旨在分析成人c的转录组。秀丽隐杆线虫蠕虫暴露于驱虫药伊维菌素(IVM)的N2菌株,并将其与抗性菌株DA1316和最近确定的杀伤蛋白定量性状基因座(QTL)进行比较。 RNA并在Illumina NovaseQ6000平台上对其进行了排序。使用内部管道确定差异表达的基因(DEG)。将DEG与先前关于IVM抗性c的微阵列研究的基因进行了比较。秀丽隐杆线虫和Abamectin-QTL。我们的结果显示,N2 c中不同基因家族的615摄氏度(183个上调和432个下调基因)。秀丽隐杆线伤。31与DA1316菌株的IVM成年蠕虫的基因重叠。我们确定了19个基因,包括叶酸转运蛋白(Folt-2)和跨膜转运蛋白(T22F3。11),在N2和DA1316菌株中表现出相反的表达,被认为是潜在的候选物。此外,我们编制了进一步研究的潜在候选列表,包括T型钙通道(CCA-1),氯化钾共转运蛋白(KCC-2),以及其他映射到Abamectin-QTL的基因,例如谷氨酸门控通道(GLC-1)。