降解液中的抗生素四环素 (TC) 及其降解产物 (TDPs) 存在严重的环境问题,例如损害人体健康和降低生态风险,因此需要进一步处理后才能排入水环境,此外,它们对微藻的环境影响尚不清楚。本研究采用水钠锰矿光催化和紫外照射降解 TC,随后利用微藻 Scenedesmus obliquus 进行生物净化。此外,还检测了微藻的光合活性和转录以评估 TC 和 TDPs 的毒性。结果表明,光催化降解 30 min 后效率达到 92.7%,检测到 11 种中间产物。微藻在 8 d 后就达到了较高的 TC 去除率 (99.7%)。降解的TC溶液(D)处理下的S. obliquus生物量显著低于纯TC(T)(p < 0.05),且T处理下的S. obliquus恢复力优于D处理。不同处理的转录组分析显示,差异基因表达主要涉及光合作用、核糖体、翻译和肽代谢过程。光合作用相关基因的上调和叶绿体基因的差异表达可能是S. obliquus在暴露于TC和TDPs时获得高光合效率和生长恢复的重要原因。本研究为采用催化降解和微藻净化相结合的方式去除TC提供了参考,也有助于认识TDPs在自然水环境中的环境风险。
选定论文后,在 Scopus 和 WoS 数据库上搜索,结果找到了 1969 年至 2022 年发表的 130 篇研究论文(图 1A)(表 S1)。所有分析的论文均以英语发表,因为英语是全世界科学交流的主要语言。23 出版物数量从 2013 年开始增加(5 篇论文),2021 年达到最高数量(18 篇论文)。多年来,以开放获取或每个订阅形式发表的论文数量保持不变。开放获取是一种增加期刊引用的工具,因为读者可以免费访问论文,研究人员和外部社区能够更轻松地获取最新的科学信息。24 另一方面,这种出版模式对某些作者来说可能具有挑战性,因为开放获取论文需要作者付费才能发表。
藻酸盐是一种从棕色藻类中提取的自然存在的生物聚合物,它提出了一种有希望的途径,用于开发可持续和效率的废水处理膜。本综述全面研究了基于藻酸盐的膜在制造,修饰和应用有效的水纯净方面的最新进展。纸张研究了各种制造技术,包括铸造,静电纺丝和3D打印,这些印刷不存在所得藻酸盐膜的结构和功能特性。为提高性能,采用了交联,掺入诸如诸如效果,并且采用了表面功能化。这些修改优化了至关重要的特性,例如机械强度,孔隙率,选择性和防毒性抗性。此外,响应表面方法论(RSM)已成为系统地优化制造参数的宝贵工具,使研究人员能够确定达到所需膜特性的最佳条件。将藻酸盐膜与生物处理过程的整合,例如植物修复(利用微藻)和霉菌修复(采用真菌),提供了一种协同方法,以增强废水处理能力。通过将这些微生物固定在藻酸盐基质中,它们的生物修复能力得到扩增,从而改善了污染物降解和营养去除。总而言之,基于藻酸盐的膜表现出显着的潜力,作为废水处理的可持续和有效技术。持续的研究和开发,重点是优化制造过程,并与生物系统探索创新的整合策略,将进一步推动藻酸膜膜在应对水污污染的全球压力挑战时的应用。
随着深度学习的出现,可变形图像配准经历了一场变革。虽然卷积神经网络 (CNN) 可以加速配准,但与迭代成对优化方法相比,它们的准确度较低,并且需要大量的训练队列。基于使用神经网络表示信号的进步,隐式神经表示 (INR) 已在配准社区中出现,用于连续建模密集位移场。使用成对配准设置,INR 可以减轻从一组患者身上学到的偏差,同时利用先进的方法和基于梯度的优化。然而,坐标采样方案使得密集变换参数化与 INR 容易产生生理上不合理的配置,从而导致空间折叠。在本文中,我们介绍了 SINR——一种使用自由形式变形 (FFD) 参数化 INR 表示的连续可变形变换的方法。SINR 允许多模态可变形配准,同时缓解当前基于 INR 的配准方法中发现的折叠问题。 SINR 在 CamCAN 数据集上的 3D 单模和多模脑配准方面均优于现有的最先进方法,证明了其在成对单模和多模图像配准方面的能力。关键词:隐式神经表征、图像配准、多模
摘要:在当代数据交换的不断发展的景观中,同时确保基于云的文件传输的效率和安全性的关键需求优先。这项研究深入研究了文件传输机制的细微复杂性,提出了一种通过AES和RSA(例如AES和RSA)进行双重加密为特征的整体方法。通过加密技术的整合,再加上隐身的输注,这项研究努力建立一个弹性的框架。它的目的不仅是为了增强基于云的文件传输的安全性,而且还促进了动态云环境中有效且无缝的数据交换过程。这些加密方法的融合,从战略上补充了地理原理的融合,代表了在数据保护与云中文件传输的简化操作之间实现最佳均衡的创新迈进。
该项目调查了使用Python将LSB(最不重要的位)隐肌造影术结合到图像和秘密密钥嵌入技术中。主要目标是找出最不重要的图片像素部分是否可以隐藏私人数据,例如加密密钥。该项目使用LSB隐化算法将秘密密钥嵌入图像文件中。为了用最少的视觉影响编码敏感数据,该技术操纵了每个像素RGB通道的最不重要的位。通信渠道的完整性在很大程度上取决于加密密钥的安全传输,这是当前安全过程中的常见实践。但是,当交换密钥时,可能会出现漏洞。这些键在当前系统中可能没有额外的安全性,使它们容易受到拦截或不需要的访问。通过将密码键直接嵌入到图片文件中,该技术介绍了一种革命性的方法。此技术旨在通过引入低调的安全层来增强密钥传输安全性。该项目研究了这种方法的潜在好处和挑战。这一发现很重要,因为它有可能通过利用LSB隐肌来添加额外的保密层来改善当前的安全方法。
如果在成品水中检测到的蓝藻毒素超过适用阈值,将发布饮用水使用建议。将根据 OAC 规则 3745-90-06 对总微囊藻毒素阈值超标情况进行公开通知。虽然微囊藻毒素和柱孢藻毒素的健康建议是基于十天健康建议值,但 PWS 需要尽快采取行动保护公众免受接触。如果在重新取样和重复取样结果中石房蛤毒素、柱孢藻毒素或类毒素-a 的阈值超标,俄亥俄州环保局将建议 PWS 发布公共通知,包括健康影响语言和使用限制。俄亥俄州环保局将评估各种特定地点的因素,以确定是否应在重复取样之前、重新取样结果表明阈值超标之后或直到可以采取其他措施并获得其他样本结果之前发布公共通知。如果 PWS 未按照建议发布公共通知,俄亥俄州环境保护局可根据俄亥俄州修订法典 (ORC) 第 6109.06 节发布饮用水使用咨询,或要求 PWS 根据 OAC 规则 3745-81-32 的授权发布公共通知。
摘要:血管生成和转移代表了在其进展的后期阶段对抗癌症发展的两个具有挑战性的靶标。许多研究表明,天然产物在阻断几种晚期肿瘤中肿瘤血管生成信号传导途径中的重要作用。近年来,海洋多糖岩藻撒亚酸岩藻可素成为有前途的抗癌化合物,在体外和体内不同类型的癌症模型中都显示出有效的抗肿瘤活性。这篇综述的目的是专注于岩藻撒亚岛的抗血管生成和抗转移活性,并特别强调临床前研究。独立于其来源,泛素抑制了几种血管生成调节剂,主要是血管内皮生长因子(VEGF)。提供了汇集者正在进行的临床试验和药代动力学方案,以提出主要的挑战,这些挑战仍然需要解决其卧铺对床的翻译。
微藻生产的生物燃料和其他商品商业化的主要瓶颈是光养培养的高成本。提高微藻生产力可能是解决这个问题的办法。合成生物学方法最近已用于设计几种微藻菌株的下游生产途径。然而,在微藻中,设计上游光合作用和碳固定代谢以增强生长、生产力和产量的尝试很少。我们描述了改进从光中产生还原能的策略,以及改进通过天然卡尔文循环或合成替代品吸收二氧化碳的策略。总体而言,我们乐观地认为,最近的技术进步将推动微藻研究取得期待已久的突破。
微藻是微观群体的一部分,是光合和多方面的分类单元,被称为微藻。它们具有独特的特性,使它们能够在非常规的空间中繁荣发展,并使其适合通常不适合文化增长的领域。这是由于它们能够快速繁殖的能力,很少努力地适应不同的环境(Odjadjare等,2017; Wang等,2014)。除了吸收阳光和二氧化碳外,微藻还消耗了土壤或水生栖息地的营养,它们也是Mosphere中氧气的重要来源(Rizwan等,2018)。微藻不仅有助于通过将二氧化碳转化为生物量来减少温室气体的排放,而且还具有巨大的生物技术潜力。碳水化合物,蛋白质