摘要 - 本文介绍了沿着放置在振荡流的紧凑型腔内的一堆固体板的热声热泵送的数值研究。速度和压力场受两个声源控制:主要的“压力”来源监测流体压缩和膨胀阶段,以及一个次级“速度”来源,产生振动性的流体运动。使用“内部”代码求解Navier进行数值模拟 - 在二维几何形状中低马赫数近似下的Stokes方程。在线性状态下,使用该模型正确描述热声热泵,用于不同参数集,例如堆栈板的热物质特性,压力振荡的幅度或速度源,两个源之间的相移。堆栈板两端之间建立的正常温度差的数值结果与分析估计值和文献中发表的实验结果非常吻合。然后考虑几种对应于在外壁上施加的不同热条件和内部分离板的配置。如果分离板是绝热的,则温度沿堆栈线性变化,从而恢复了经典线性理论的结果。如果分离板是热导传导的,则该模型提供了局部热量和传质的详细说明,表明温度场变得完全二维,并且热泵热泵效率较小。该模型非常适合探索局部传热限制对热泵效率的影响,因此非常适合详细分析更复杂的机制,例如浮力效应。
图 5 同侪影响敏感性和冒险行为对伏隔核 (NACC) 神经相似性的回归。为自己和最好的朋友做决定之间的 NACC 神经相似性与青少年的 (a) 同侪影响敏感性和 (b) 冒险行为呈正相关。为自己和父母做决定之间的 NACC 神经相似性与青少年的 (c) 同侪影响敏感性或 (d) 冒险行为无显著相关性。显示了关系的 95% 置信区间 (CI)。所有报告的 p 值均经过 Bonferroni 调整。
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
摘要随着全球CO 2的浓度的增加,由于许多国家正在努力达到净碳中立性,因此在建筑业中需要可持续的替代方案。将碳捕获和固存(CCS)技术整合到3D混凝土印刷中,以减少建筑部门的碳足迹的有前途的解决方案。本文研究了一种新的印刷技术,涉及涉及加压CO 2气体的清除,并评估了各种过程参数在促进碳固存中的有效性。结果表明,与对照样品相比,碳排序样品的碳吸收增加了15%。该方法可以与现有的隔离技术互补,从而促进大规模碳固换而没有腔室尺寸的限制。然而,对于优化各种印刷参数并实现碳捕获和隔离技术与3DCP的更加平衡,更有效的集成是必要的进一步研究和开发。
●婴儿消耗的10种最严重污染的食物(以最高的污染开始)是:米饭,米饭谷物,米饭的泡泡,糙米,糙米,牙磨碎的饼干和米饭的Rusks,白米,葡萄干,葡萄干,磨碎的饼干(非饼干),绿色饼干(非果皮),granola bar搭配葡萄干,葡萄干和冰淇淋式缝制。●大米蛋糕和薯片谷物被砷污染。它们含有比任何其他测试的食物更高的砷。两者都脱颖而出,避免了儿童和成人的食物。●从最低开始的婴儿消耗的10种最少污染的食物是:香蕉,沙粒,婴儿食品品牌肉类,胡桃南瓜,羊肉,苹果,苹果,猪肉,鸡蛋,鸡蛋,橙子和西瓜。
本演示文稿中的信息包含前瞻性陈述,其中涉及许多风险和不确定性。除历史事实陈述之外的所有陈述均为前瞻性陈述,通常以“预期”、“相信”、“可能”、“估计”、“期望”、“目标”、“打算”、“期待”、“可能”、“计划”、“潜在”、“预测”、“预计”、“应该”、“将”、“会”等术语和类似表述表示。本文包含的前瞻性陈述代表 Evotec 在本演示文稿发布之日的判断。此类前瞻性陈述既不是承诺也不是保证,但受各种风险和不确定性的影响,其中许多风险和不确定性超出我们的控制范围,并且可能导致实际结果与这些前瞻性陈述中预期的结果存在重大差异。我们明确表示不承担任何义务或承诺公开发布任何此类声明的更新或修订,以反映我们预期的任何变化或此类声明所依据的事件、条件或情况的任何变化。鉴于这些风险、不确定性和其他因素,您不应过分依赖这些前瞻性陈述。
●连续监视●更大的检测和本地化精度●探索和抵消声纳限制●降低系统成本●多重泄漏检测能力●导致早期缓解的小泄漏检测●更高的水分配可靠性和弹性