Sugawara,K.,M。Inatsu和Y. Harada,2024年:使用大型合奏数据集对北海道吹雪的气候变化评估。大气上的科学在线信件(Sola),印刷中。
声明................................................................................................................................ 1
摘要 声门下狭窄很少是特发性的。在本病例报告中,一名 40 岁的女性患者出现病因不明的声门下狭窄,同时伴有双侧支气管狭窄。该患者因哮喘接受治疗已有 13 年,近 4 年来出现声音嘶哑。体格检查发现双侧有干咳。断层扫描分析显示 C6-7 水平 2 cm 段气管狭窄。支气管镜检查显示声门下狭窄。整个气管支气管树中均可见白色斑块;进行了活检并进行了灌洗。样本送去进行病理和微生物学检查。左主支气管入口和右中间支气管水平支气管系统狭窄明显。进行了扩张术。活检病理示慢性活动性炎症及鳞状上皮增生,结核菌及非特异性培养未见生长,胃肠道检查未见反流,血清学及风湿病学检查均正常。特发性声门下狭窄极为罕见,伴有特发性气管狭窄的支气管系统狭窄更为罕见,且治疗困难。
致谢广东工业大学的工作得到了广东省自然科学基金(批准号 2017B030306003 和 2019B1515120078)的支持。R. Wang 得到了广东省基础与应用基础研究基金(批准号 2021A1515110328 和 2022A1515012174)的支持。F. Zheng、Y. Fang 和 S. Wu 得到了国家自然科学基金(11874307)的支持。CZ Wang、V. Antropov 和 F. Zhang 得到了美国能源部 (DOE) 科学办公室、基础能源科学、材料科学与工程部的支持。艾姆斯实验室由爱荷华州立大学根据合同编号 DE-AC02-07CH11358 为美国能源部运营,包括在伯克利的国家能源研究超级计算中心 (NERSC) 提供计算机时间。 Y. Sun 的研究得到了美国国家科学基金会 DMR-2132666 号资助。R. Wang 和 H. Dong 还感谢广东工业大学校园网络与现代教育技术中心为本研究提供的计算资源和技术支持。
摘要。神经调节在解读神经回路和探索神经系统疾病的临床治疗中发挥着不可估量的作用。光声神经调节是一种新兴的模式,它受益于超声波的高穿透深度以及光子的高空间精度的优点。我们总结了各种用于神经调节的光声平台的最新发展,包括基于光纤、薄膜和纳米传感器的设备,强调了每个平台的主要优势。讨论了光声作为一种可行的神经调节工具的可能机制和主要障碍。提出了基础研究和转化研究的未来方向。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.032207]
摘要:近年来,二维磁性材料 (2DMM) 已成为二维材料领域的一个研究热点,因为它们在基础研究以及未来自旋电子学、磁子学、量子信息和数据存储等技术相关应用中具有重要意义。2DMM 丰富的工具箱及其多样化的可调谐性使得对二维磁序的研究达到了前所未有的水平,研究范围深入到单原子层材料,远远超出了经典的薄膜磁性,为电子学、磁光学和光子学提供了一条极具前景的途径。在各种自由度中,自旋和声子 (即晶格振动的量子) 之间的相互作用,即所谓的自旋-声子耦合,是探索二维磁性的重要调谐旋钮,创造了新型准粒子并控制磁序。本综述概述了 2DMM 中自旋-声子耦合研究的最新进展。讨论了利用自旋-声子耦合研究二维磁性的各种技术。本文还总结了基于自旋-声子耦合调节二维磁序的最新进展,重点介绍了新功能。此外,本文还简要讨论了基于自旋-声子耦合的器件开发和概念。本综述将为我们介绍二维磁体及其功能器件中自旋-声子耦合研究的现有挑战和未来方向。
志勇、苍怀兴和杨鑫 2020. 基于薄膜氮化镓 (GaN) 的声流体镊子:建模和微粒操控。超声波 108,106202。10.1016/j.ultras.2020.106202
摘要:钻石中氮呈(NV)中心的电荷状态是下一代量子传感,通信和计算的先决条件。在这里,我们使用声子辅助的反stokes激发来实现NV 0和NV-状态之间的可逆转换。在这种情况下,我们观察到具有寿命长达数十秒钟的NV-中心的两个衰减过程。通过研究NV-状态的光谱结构演化的动力学,我们发现NV-中心的光谱结构是通过反stokes激发的电荷状态过渡过程调节的。我们提出的主要原因是由NV-的电离产生的局部电场,它改变了颜色中心的辐射环境。我们的结果可能提供了一种控制氮 - 视牙中心的电荷状态的替代方法。关键字:钻石,电荷状态控制,声子辅助上转换,量子光学■简介
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。
图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。