野战水壶,带铝杯 1 个,放在水壶口袋中 野战水壶口袋 1 个,固定在右侧腰带上 战斗手套 1 双,不用时放入右大腿口袋中 头灯 1 个,放在右臂口袋中 M-77,带鞋底 1 双,用于救援的替代运动鞋。其他的放在一个防水袋里。指南针 1 放在左臂口袋里。野战帽 1 或者,头盔帽。另一个放在袋子里,防水包装 第二行 - 基本设备 头盔带头盔罩 1 如果不使用,则放在袋子顶盖下面 第三行 - 解剖袋(木片上贴有名称标签) 带有透明和深色镜片的碎片眼镜 1 顶盖 羊毛毛巾布底部 1 主隔层。防水包装。羊毛毛巾布上衣 1 个主隔层。防水包装。防风手套及内手套 1 对 主隔层。防水包装。巴拉克拉法帽 1 顶盖
导电金属通常会传输或吸收自旋电流。本文报告了将两层金属薄膜连接在一起可以抑制自旋传输和吸收的证据。我们研究了铁磁体/间隔层/铁磁体异质结构中的自旋泵浦,其中间隔层(由金属 Cu 和 Cr 薄膜组成)将铁磁自旋源层和自旋吸收层分隔开。Cu/Cr 间隔层在很大程度上抑制了自旋泵浦,即既不传输也不吸收大量自旋电流,尽管 Cu 或 Cr 单独传输了相当大的自旋电流。Cr 的反铁磁性对于抑制自旋泵浦并不是必不可少的,因为我们观察到 Cu/V 间隔层也有类似的抑制作用,其中 V 是 Cr 的非磁性类似物。我们推测,自旋透明金属的多种组合可能形成抑制自旋泵浦的界面,尽管其潜在机制仍不清楚。我们的工作可能会激发人们对理解和设计金属多层中的自旋传输的新视角。
图3给出了不同AlN间隔层厚度下二维电子气密度的变化。间隔层厚度越高,片状电荷密度(ns)越好,在0.5nm~2nm之间与AlN间隔层厚度几乎呈线性关系。电子密度的增加是由于压电和自发极化的影响。由于明显的极化效应,AlN间隔层可能引起偶极散射增加,结果二维电子气迁移率下降。在此临界厚度以下,间隔层增强了导带位移,有效降低了波函数对AlN势垒的穿透,从而降低了合金无序扩散的影响。电子片密度为1.81×1013cm-2,与[15]中计算的1nm AlN层电子片密度大致相同。
采用减压化学气相沉积法在 Si 0.4 Ge 0.6 虚拟衬底(VS)上循环外延生长 Ge/SiGe 超晶格,制备了三维(3D)自有序 Ge 纳米点。Ge 纳米点采用 Stranski-Krastanov 机理形成。通过 Ge/SiGe 超晶格沉积,分别获得了沿垂直和横向的点上点排列和〈100〉排列。研究了 Ge 纳米点的刻面和生长机制以及排列的关键因素。观察到两种类型的 Ge 纳米点:由 {105} 面组成的类金刚石纳米点和由 {113} 和 {519} 或 {15 3 23} 面组成的圆顶状纳米点。Ge 纳米点倾向于直接在前一周期的纳米点上方生长,因为这些区域表现出由埋藏的纳米点引起的相对较高的拉伸应变。因此,这种点对点对准对 SiGe 间隔层厚度很敏感,并且当 SiGe 间隔层变厚时,这种对准会变差。由于超晶格和 VS 之间的应变平衡,SiGe 间隔层中 45% 至 52% 的 Ge 含量会影响 Ge 纳米点的横向对准和尺寸均匀性。通过保持应变平衡,可以改善 3D 对准 Ge 纳米点的排序。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/acce06 ]
等离子体增强化学气相沉积 (PECVD) SiC 基阻隔涂层已被开发用于保护包括聚合物发光二极管 (PLEDS) 在内的发光设备。薄膜封装由不同 PECVD 层的堆叠组成,各个层针对特定的涂层特性进行了优化,包括应力控制和高水/氧阻隔特性。这些阻隔涂层已成功应用于 PLED 设备,优化的阻隔堆叠既没有出现可见的机械故障,也没有出现任何颜色光谱功率分布偏移。阻隔层的 PECVD 沉积会导致设备电流效率略有下降,这是在没有水和氧的情况下测量时发光寿命延长的代价。PECVD 堆叠的阻隔特性已显示可将发光寿命提高高达 70% 的玻璃密封设备寿命,并且目前受到薄膜阻隔中出现的缺陷的限制。
5A. 建议回答:环保书包是绝佳的购买选择,原因如下。首先,它使用再生材料,体现了对环境可持续性的承诺,是一种环保选择。此外,符合人体工程学的设计,配有带衬垫的肩带和透气的网状背板,确保长时间在校期间获得最大的舒适度。宽敞的主隔层配有多个口袋和收纳袋,为课本、笔记本和其他必需品提供了充足的存储空间,促进了组织和效率。此外,反光条的加入提高了可见性和安全性,尤其是在光线不足的情况下。防水面料进一步保护物品免受意外阵雨的侵袭,增加了书包的耐用性和可靠性。这款书包有各种鲜艳的颜色和图案可供选择,不仅满足功能需求,还允许表达个人风格,使其成为学生的多功能和有吸引力的选择。
分层的2D杂交钙壶由于其独特的光电特性和高度模块化的结构而引起了人们的关注,可以通过改变有机和inor虫组件来量身定制。[1-4]这些材料由基于S X A N-1 M N X 3 N + 1公式的有机间隔物(S)层组成,与S X A N-1 M N X 3 N + 1公式相结合,其中X是X的间隔分子的数量,与两个相邻的Perovskite层相连。这涉及中央(a)阳离子(例如CS +,甲基铵(MA +),for- mamidinium(fa +)等)基于二价金属离子(pb 2 +或sn 2 +)和卤化物(x-)阴离子(i-,br - 或cl-)的{mx 6}八面体金属 - 哈衬里框架的工作。它们的结构特征是有机间隔层和无机板之间微妙相互作用的结果,并且通常将它们广泛分为Ruddlesden-Popper(RP)[4,5]和Dion-Jacobson(DJ)阶段。[6]在情况下
元素金属薄膜在现代电子纳米器件中起着非常重要的作用,可用作传导通路、间隔层、自旋电流发生器/探测器以及许多其他重要功能。在这项工作中,通过利用固体金属有机源前体的化学性质,我们展示了元素 Ir 和 Ru 金属薄膜的分子束外延合成。当金属有机前体在基底表面分解时,通过对金属相的热力学和动力学选择,可以合成这些金属。采用原位和非原位结构和成分表征技术相结合的方式,研究了不同条件下的薄膜生长。在前体吸附、分解和晶体生长的背景下,讨论了基底温度、氧反应性和前体通量在调整薄膜成分和质量方面的重要作用。计算热力学将金属或氧化物形成的驱动力量化为合成条件和化学势变化的函数。这些结果表明,体热力学是低温下 Ir 金属形成的合理原因,而 Ru 金属的形成可能是由动力学介导的。
我们报告了通过二维半导体WS 2的范德华异质结构的能量转移机理和具有不同层间距离的石墨烯,这是通过六角硼硝化硼(HBN)的间隔层实现的。我们在0.5 nm至5.8 nm(0-16 HBN层)之间记录了层间距离处的光致发光和反射光谱。我们发现能量转移由光锥外部的状态支配,这表明了f的转移过程,并在0.5 nm的层间距离下右手过程的额外贡献。我们发现,可以使用最近报道的热载荷载载流子的f ister传递速率进行定量描述发光强度对层间距离的测量依赖性。在较小的层间距离处,实验观察到的转移速率超过了预测,此外,取决于过量的能量以及激发密度。由于f”机制的转移概率取决于电子孔对的动量,因此我们得出结论,在这些距离上,转移是由非省力的荷载载流子分布驱动的。
抽象关键信息使用祖先服装开发的多个双亲种群在番茄中鉴定出六个新型的水果重量QTL。在这些基因座的有益等位基因出现在半动脉的亚群中,并可能被抛在后面。这项研究为这些等位基因进入育种计划铺平了道路。摘要在农作物驯化过程中强烈选择了可食用器官的大小和重量。同时,人类还专注于水果和蔬菜的营养和文化特征,有时会反对对有益尺寸和重量等位基因的选择性压力。因此,器官重量的新型改进等位基因可能仍在祖先种质中分离。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。 我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。 小肠和隔层水果组织成比例地增加,表明靶向选择。 我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。 这些父母还显示出果实体重属性的差异以及大小增加的发育时机。 对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。小肠和隔层水果组织成比例地增加,表明靶向选择。我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。这些父母还显示出果实体重属性的差异以及大小增加的发育时机。对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。随后通过后代测试对位于染色体1、2和3的三个QTL进行了验证。通过探索已知的果实体重基因和已确定的QTL的隔离,我们估计,新近鉴定的基因座中最有益的等位基因是从南美的半动脉亚群中引起的,并且不太可能传播到完全驯化的土地。因此,这些等位基因可以使用本研究中确定的种质和遗传资源纳入育种计划。