先进材料和设备技术在各个领域支撑着我们的生活。它们在智能手机、汽车、机器人和通信功能的信息和通信设备技术中发挥着核心作用。它们通过太阳能电池、可充电电池、功率半导体、磁铁/磁性材料、水和 CO 2 电解池以及分离膜等各种设备和材料为碳中和做出贡献。在医疗保健和医学领域,它们被用于人工微系统,例如针对 COVID-19 病毒的 mRNA 疫苗、用于早期诊断和生物信息监测的高灵敏度传感器设备以及用于预防、诊断和治疗癌症和脑疾病的设备和材料。纳米技术能够在非常小的尺度上观察、控制和处理物质的结构,对于实现这些材料和设备是必不可少的。最近与这一领域有着特别密切联系的世界事件是美国和中国争夺技术霸权而导致的全球供应链不稳定、COVID-19 疫情以及俄罗斯入侵乌克兰。这些世界形势的变化正在破坏“在最合适的地方生产,以提高整体效率”这一全球供应链的前提。作为经济安全最重要的问题,各国都在推行将稀缺资源和供应来源有限的工业产品列入清单、将重要技术恢复到国内生产等政策。冷战结束后持续的全球开放经济运动陷入停滞,民族主义和保护主义的兴起以及经济脱钩即将发生。这样的社会趋势不仅影响着经济领域,也影响着学术界的先进科学研究。国际上对这一领域的另一个重大要求是对可持续发展目标的贡献。特别是,为了在2050年实现碳中和,需要新开发可再生能源利用技术和减少CO 2排放的节能技术、CO 2捕获和利用技术、回收和再利用技术。除了开发这些新技术之外,还需要重新审视以前认为已经建立并优化的生产技术。为了在长期研发的领域取得突破,可能需要从材料和生产工艺的原理层面进行革新,因此这种基础研发非常需要密切的国际合作。在这种竞争与合作并存的困难局面下,日本也在实施双管齐下的政策。在“2050年实现碳中和的绿色增长战略”、“材料创新战略”、“量子技术与创新战略”等国家战略下,各种研发正在蓬勃发展。这些战略的实施是为了应对日本面临的挑战、对国际社会共同目标的贡献、建立经济安全等各个方面。此外,最近特别引人注目的是日本重启先进半导体工艺开发的努力。基于“半导体和数字产业战略”,日本积极投资研究
2.1.4 电解・燃料电池 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。140 2.2 バイオ・医疗応用 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。149
ken-ichi Yamada,Shun Ishibashi,Naohiro Sata,Marcus Conrad,Masafumi Takahashi#
高等材料科学(先进材料科学与工程) 3 3 全英讲授薄膜科学与工程(薄膜科学与工程) 3 3 全英讲授晶体结构与分析(晶体结构与分析) 3 3 材料分析(材料分析) 3 3 全英讲授电浆制造工艺与应用(等离子体加工与应用) 3 3 电子显微镜实务一(电子显微镜实践1) 2 2材料功能与设计(材料的功能与设计) 3 3 进阶表面处理(Advanced Surface Treatment) 3 3 半导体工程(Semiconductor Engineering) 3 3 太阳能电池特论(Special Topics on Solar Cells) 3 3 高分子材料特论(Special Topics on Polymer Materials) 3 3 人工智慧概论(Introduction to Artificial Intelligence) 3 3 电化学特论(Special Topics on Electrochemistry) 3 3 全英讲授高等材料选择与设计(Advanced Material Selection and Design) 3 3 有机光电材料与元件有机光电材料与器件 3 3 固体物理(Solid StatePhysics) 3 3 全英讲授奈米检测技术(Nano-writing Technology) 3 3 电子显微镜实务二(电子显微镜实践2) 1 1需先修习(电子队伍实务一)之后方可修习此门课程 半导体元件物理(半导体器件物理) 3 3 全英讲授复合材料(复合材料) 3 3 全英讲授进阶能源材料(先进能源材料) 3 3 全英讲授奈米生医与绿色材料(纳米生物与绿色材料) 3 3 奈米科技与应用(纳米技术与应用) 3 3 全英授课 光电工程与材料(光电工程与材料) 3 3 封装工艺与材料(包装与材料) 3 3 薄膜磨润学(薄膜摩擦学) 3 3
生活方式共同创造实验室新闻稿:https://www.nttdocomo.co.jp/info/news_release/2021/09/30_02.html
图 5 同侪影响敏感性和冒险行为对伏隔核 (NACC) 神经相似性的回归。为自己和最好的朋友做决定之间的 NACC 神经相似性与青少年的 (a) 同侪影响敏感性和 (b) 冒险行为呈正相关。为自己和父母做决定之间的 NACC 神经相似性与青少年的 (c) 同侪影响敏感性或 (d) 冒险行为无显著相关性。显示了关系的 95% 置信区间 (CI)。所有报告的 p 值均经过 Bonferroni 调整。
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
摘要随着全球CO 2的浓度的增加,由于许多国家正在努力达到净碳中立性,因此在建筑业中需要可持续的替代方案。将碳捕获和固存(CCS)技术整合到3D混凝土印刷中,以减少建筑部门的碳足迹的有前途的解决方案。本文研究了一种新的印刷技术,涉及涉及加压CO 2气体的清除,并评估了各种过程参数在促进碳固存中的有效性。结果表明,与对照样品相比,碳排序样品的碳吸收增加了15%。该方法可以与现有的隔离技术互补,从而促进大规模碳固换而没有腔室尺寸的限制。然而,对于优化各种印刷参数并实现碳捕获和隔离技术与3DCP的更加平衡,更有效的集成是必要的进一步研究和开发。