ij esme] ij esme] max() FDLH,D; RJHDK GS TKS GESA DKSBZ,SLK RJHDK GS TKS GESA MAX; fn [kk,¡a cppkksa ds jksy uacj fn [kk,`a data t+; T+; YX LDRK GSA YX LDRK GSA div>
入学编号:................................ 学校名称:................................................................................
现将 2005 年 5 月 11 日至 20 日举行的第 80 届海上安全委员会 (MSC 80) 会议的决定和讨论情况摘要如下,供您参考。 1. 通过强制性文件 - SOLAS 第 II-1(1)章有关破损稳性 (A、B、B-1、B-2 和 B-4 部分) (参阅附件 1 的附件 2) 关于自 1994 年开始的客船与干货船分仓和破损稳性规定的协调问题的讨论已于本届会议结束。经修订的 SOLAS 公约第 II-1 章规定了采用概率计算方法的破损稳性要求,该修正案已在本次会议上通过,并将于 2009 年 1 月 1 日生效。与破损稳性有关的修正案适用于 2009 年 1 月 1 日或以后建造的客船和干货船。 (2) 除有关破损稳性(第 A-1、B 和 C 部分)外(参见附件 1 的附件 1) SOLAS 公约第 II-1 章除破损稳性外的下列修正案已在本次会议上通过,并将于 2007 年 1 月 1 日生效。这些修正案的内容如下。 (i) 第 3-7 条 - 船上和岸上的建造图纸保存 自 2007 年 1 月 1 日或以后建造的船舶,船上应保存 MSC/Circ.1135 中提及的一套建造时建造图纸,以及显示任何后续结构改动的其他图纸。 (ii) 第 3-8 条 - 拖带和系泊设备 船舶应配备具有足够安全工作负荷的装置、设备和配件,以便安全进行与船舶正常运行相关的所有拖带和系泊作业,但根据第 3-4 条提供的应急拖带装置除外。关于该法规的技术规范,已批准了 MSC/Circ.1175,该法规为拖带和系泊相关的船上配件和支撑船体的设计和建造提供了标准。
零用于日常操作的现场工作人员Aerostat Autopilot软件套件包括:自动调度控制(ADC)•基于人工智能的决策引擎•确定GO/NO-GO决策,目标高度/态度,有效负载操作状态等。•系统诊断,外部天气数据和任务目标AI飞行总监的输入•实时,闭环控制Aerostat系统•管理无机操作•合并智能诊断以最大化正常运行时间低级控制器•管理闭环的单个执行器•完成AI Flight Direction Direption Direption Direption Direption Direption Director
LVS :5000 美元 GBS :N/A 管制项目清单: 相关管制 :N/A 相关定义 :N/A 项目: a. 在 ISO 3977-2:1997(或同等国家标准)规定的标准参考条件下以“稳态模式”运作时的最大连续功率为 24,245 千瓦或以上;以及 b. 使用液体燃料时,在最大连续功率的 35% 下‘修正后燃料消耗率’不超过 0.219 千克/千瓦时。 注:“船用燃气涡轮发动机”一词包括那些改装用于船舶发电或推进的工业或航空衍生燃气涡轮发动机。技术说明:就 9A002 而言,“修正后的特定燃料消耗”是指发动机的特定燃料消耗,修正为净比能(即净热值)为 42 MJ/kg(ISO 3977-2:1997)的船用蒸馏液体燃料。9A003 为下列任何航空燃气涡轮发动机(参见受控物项清单)专门设计的组件或部件,其中采用了 9E003.a、9E003.h 或 9E003.i 所控制的任何“技术”。许可证要求
LVS :5000 美元 GBS :N/A 管制项目清单: 相关管制 :N/A 相关定义 :N/A 项目: a. 在 ISO 3977-2:1997(或同等国家标准)规定的标准参考条件下以“稳态模式”运作时的最大连续功率为 24,245 千瓦或以上;以及 b. 使用液体燃料时,在最大连续功率的 35% 下‘修正后燃料消耗率’不超过 0.219 千克/千瓦时。 注:“船用燃气涡轮发动机”一词包括那些改装用于船舶发电或推进的工业或航空衍生燃气涡轮发动机。技术说明:就 9A002 而言,“修正后的特定燃料消耗”是指发动机的特定燃料消耗,修正为净比能(即净热值)为 42 MJ/kg(ISO 3977-2:1997)的船用蒸馏液体燃料。9A003 为下列任何航空燃气涡轮发动机(参见受控物项清单)专门设计的组件或部件,其中采用了 9E003.a、9E003.h 或 9E003.i 所控制的任何“技术”。许可证要求
干细胞衍生的人类脑类器官和微电极阵列 (MEA) 技术的最新进展提出了一个深刻的问题,即这些系统产生感知的潜力。脑类器官是 3D 组织构造,可重现大脑发育和功能的关键方面,而 MEA 可实现与神经元培养物的双向通信。随着脑类器官变得越来越复杂并与 MEA 集成,出现了一个问题:这样的系统不仅能支持智能计算,还能支持主观体验吗?本文探讨了这一思想实验的哲学含义,考虑了脑类器官表现出感官意识、痛苦、偏好和其他感知特征的情景。它研究了如果在脑类器官中发现令人信服的感知证据将会出现的道德困境,例如这些实体的道德地位以及不同类型研究的可允许性。本文还探讨了类器官感知现象如何揭示意识的本质和人工感知的合理性。尽管承认这些思考只是推测性质,但本文认为,鉴于该领域的快速发展,有感知能力的脑器官的可能性值得认真考虑。积极应对这些问题有助于为未来的研究设定重要的伦理界限,并突出科学和哲学探究的关键途径。因此,有感知能力的脑器官的思想实验是研究神经科学、伦理学和心灵哲学交叉领域的深层问题的宝贵视角。
其“组件”; b. 提供低于 NIJ III 级(NIJ 0101.06,2008 年 7 月)或“同等标准”的防弹保护的硬质防弹衣板。 ECCN 1A005 注释: 1. 本条目不管制供使用者个人防护的防弹衣。 2. 本条目不管制仅设计用于提供正面保护以防非军用爆炸装置的碎片和爆炸的防弹衣。 3. 本条目不适用于仅设计用于提供防刀、钉、针或钝器伤害的防弹衣。 1A006 为处理简易爆炸装置 (IED) 而“专门设计”或改装的设备,如下(参见管制物项清单),以及其“专门设计”的“组件”和“配件”。 许可证要求