过去十年,岩土工程和隧道工程的数字化趋势一直由这些学科内建筑信息模型 (BIM) 的发展所引领。虽然已经取得了许多进展,但 BIM 地面建模仍然是一个挑战,因为地下固有的异质性和不确定性难以描述和建模。本文介绍了 BIM 地面建模的新概念和框架。建议将 BIM 地面模型分为几个“子模型”:“事实数据模型”、“岩土模型”和“岩土综合模型”。提出的 BIM 地面建模概念基于并符合当前的国际发展(例如 DAUB / 德国 ITA 分支或 IFC 隧道),应作为如何在未来项目中进行 BIM 地面建模的范例。在介绍这一理论背景之后,本文给出了奥地利隧道 Angath 的案例研究,其中在项目规划阶段完成了最先进的 BIM 地面建模。尽管该项目的建模被视为成功,但它也凸显了阻碍 BIM 在地面建模领域得到广泛采用的几个缺陷:例如,永久数据存储、可编辑模型传输和 BIM 地面模型的轻松可视化。尽管如此,结论是 BIM 地面建模对隧道行业是有益的,因为它有助于实现更标准化和更易于理解的工作流程,并增强决策基础。
近年来,人们日益关注环保问题,导致这些系统被用于大气排放上游的其他用途,这次的目的是限制对外部环境的影响。这样一来,就可以用气体处理来补充颗粒物处理。这将重点转移到解决当地污染相关的问题上。业主通过大规模土地开发项目,专注于这些技术,以期在特定的本地环境中保护新鲜空气,例如西班牙 M30 高速公路上的隧道、马德里环城公路。GEIE-TMB(勃朗峰隧道欧洲经济利益集团)还决定在勃朗峰隧道的法国平台上方安装一个基于提取的颗粒过滤器,以便为旨在改善夏蒙尼山谷空气质量的各种当地举措做出贡献。
本可持续发展报告与前几年不同,当时该报告被称为可持续财务报告。今年,我们借此机会重新构建了可持续发展和遗产计划的报告方式,以及它们与我们 20 亿英镑可持续财务的方法和报告承诺之间的联系。本报告还包括我们去年单独报告的气候相关财务披露,以及包含 Tideway 最相关指标的数据部分。遗产是隧道建成后留下的东西。该项目的主要目的是减少污水溢流进入泰晤士河,实现水质改善这一核心效益。Tideway 和泰晤士水务公司与环境、食品和乡村事务部和环境署就项目开始时环境、食品和乡村事务部所述的经济、环境和社会效益的报告内容和方式达成了一致。这包括运营前和运营后的效益。
所采用的监控方法提出了以下概述的明确限制。•主观性:由于经验和疲劳水平的不同,人类检查可能是不一致的。不同的检查员可能会以不同的方式评估同一问题。•时间耗时:手动检查可能会缓慢且劳动密集,需要大量时间来覆盖广泛的隧道网络,例如CERN的隧道网络。•安全:对于人类检查员而言,某些区域可能很难到达或不安全,导致检查不完整。
摘要:我们考虑一维量子步行的第一个检测问题,并重复局部测量。采用频道射击测量方案和更新方程式,我们研究了隧道对检测时间的影响。特别是,我们在两种具有物理现实的典型情况下,在有限的紧密结合晶格上研究连续的时间量子行走。在没有高斯初始状态的隧穿的情况下,第一个是量子行走的情况。第二种是将屏障添加到系统中的情况。表明,可以通过修改初始条件来观察到第一个检测概率的衰减行为的过渡,并且在存在隧道障碍的情况下,可以比无杂质的晶格更早地检测到粒子。这表明沃克在重复测量下穿过障碍物的隧道时会加快沃克的演变。引入了第一个检测时间,以研究量子步行的隧道时间。此外,我们通过得出渐近公式来分析关键的及传递点。
摘要:为获得低山岭隧道施工过程中围岩结构位移、支护结构内力随时间的变化规律,本文以西山隧道工程为背景,对隧道施工过程中的隧道周边位移、地表沉降、钢拱架内力及两层支护间压力进行动态监测。根据以上监测量测数据,通过监测数据分析及非线性回归拟合,得到预测趋势曲线,得出隧道各类围岩的位移变化规律及特点,确保施工安全和支护结构的稳定性要求,为二次衬砌施工提供合理的时机。
带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射
在本文中,我们探讨了以下建议:施瓦茨柴尔德黑洞将在其寿命结束时,将经历量子过渡到“白洞”:一个恰恰是黑洞时间反转的对象。这种过渡采用量子隧道的形式。为了评估隧道幅度,我们表征了量子重力影响占主导地位的区域,因为与外部曲率相交的高度相交的高度曲面所包围,外部曲率等于零。这使我们能够恢复隧道幅度,如正常之间的增强角度指定的隧道幅度。这项工作的长期目的是找到量子重力区域真空爱因斯坦方程的复杂解,从而为黑洞蒸发后对黑洞发生的情况提供了完整的解释。
2010年8月,联邦高速公路管理局(FHWA)与HDR Engineering,Inc。(HDR)和Gannett Fleming,Inc。(GF)订婚,以开发隧道操作维护检查和评估(Tomie)手册,以使整个美国的公路隧道所有者受益。FHWA目标是提供指导,以促进业主如何运作,维护,检查和评估隧道的统一性和一致性。通常可以理解,美国的许多隧道已有50多年的历史,并且开始显示出恶化的迹象,尤其是由于水渗透。此外,预计讨论的操作,维护,检查和评估实践将有助于隧道所有者识别和纠正缺陷。要实现这些目标,HDR/GF团队的任务是制作Tomie手册,以供高速公路隧道所有者和相关隧道专业人员使用。
很明显,测量点的PPA在同一火车移动速度下进行的各种测试中有所不同,这是由于实验和数据收集误差所致。当火车移动速度在4.39–15.8 m/s范围内变化时,不同测量点的PPA变化范围存在明显差异。The PPA variation ranges of measuring points on tunnel wall, including tunnel vault (TV), tunnel left spandrel (TLS), tunnel right spandrel (TRS) and tunnel invert (TI), are about 7.0–10.0 m/s, 2.0–11.0 m/s, 2.5–15.0 m/s, 1.5–4.5 m/s, respectively.包括D2和D5在内的周围岩石质量内的测量点的PPA变化范围为1.5-8.0 m/s和2.0-