数字辅助技术 (AT) 提供了一系列强大的解决方案,帮助人们更加独立地生活并参与日常生活:在家里、在学校、在工作和在社区中。数字辅助技术包括为无法说话的人提供的通信设备、替代计算机/智能手机访问方法(如屏幕阅读器)、语音识别和眼动技术(适用于可能难以使用标准键盘、鼠标和触摸屏的人),以及大量且不断扩展的智能家居和环境控制解决方案,使人们能够打开和关闭窗户、窗帘和门,以及打开/关闭家中的灯和暖气系统。智能扬声器(如 Amazon Alexa 和 Google Home)使人们能够使用语音来控制上述所有物品,并可以轻松访问电话、短信和各种社交媒体,这些社交媒体现在在许多人的日常生活中发挥着重要作用。
外太空是无限的,可用的行星轨道不是。这使地球的轨道成为以外的国家管辖区(ABNJ)综合体以外的地区的独特案例,以可持续和公平的方式难以使用,并且几乎棘手地在国际层面进行规范。截至2023年,我们远未达到可持续的轨道环境,而地球轨道对新卫星星座的未来用途现在似乎越来越有风险。采用基于概率的经验模型来投影太空中对象的生长轨迹,本文认为,除非实施了强大的补救措施,否则该行业将在接下来的几年内越过“临界密度”阈值,除非实施清除轨道并估算主动垃圾删除量的潜在成本。我们的发现表明,无论多么先进或开创性,轨道可持续性不太可能仅来自技术。长期解决方案必然需要对过时的,通常是冲突的国际监管框架进行根本性的重写,这首先有助于造成这种碎片危机,从而使地球的轨道缩小到(几乎)无回报的点。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
信息素养是数字时代的一项核心技能。在现代教育和工作环境中,信息素养变得越来越重要,因为知识工作越来越多地基于庞大且快速变化的知识来源。搜索和组织知识是一项持续的要求。高等教育有时在专门的课程中教授信息素养,通常只在其他课程中教授。研究表明,信息素养水平较低:例如,学生难以使用搜索词中的运算符、组织文献,并且往往不知道查找科学文献的适当来源。人工智能 (AI) 在高等教育中的潜力仍需探索,需要开发创新应用。计算机能否支持教学人员培养信息能力?——“教育中的人工智能”研究领域涉及人工智能方法在教育和培训背景下的应用和评估。这项研究的主要重点之一是分析和改进教学和学习过程。一方面,深度学习——在多层(“深度”)人工神经网络中学习——已成为人工智能研究的核心组成部分,并且已经创建了大量库或框架1,以简化
涉及多个水下航行器与海底节点的海洋观测系统对更好地了解海洋起着重要作用,而水下无线通信对于海量数据交互至关重要。与声学等方法相比,具有带宽和综合作用距离的光通信是首选方法。然而方向性的存在使得光学方法难以使用,特别是当收发器配备在动力航行器上时。本研究提出了一种水下自由空间光通信信息传输方法。研究并建模了水下光传输特性、光电信号处理和调制解调算法。提出并仿真了实现水下自由空间光通信的新方法。开发了包括自由空间光发射器和接收器的原型机,并进行了不同场景下的测试,观察到的结果包括:(1)使用最少数量的LED,达到了空间均匀照明的效果,发射机覆盖范围达到160°。 (2)当发射机功率为10W,通信速率为1Mbps时,最大通信距离可达13m。
具有提高越野能力的小型移动机器人布局的新概念的发展是由于各个领域的许多现代挑战和趋势。首先,在不断增加的城市化和越来越多的城市物体(例如步骤,楼梯和不平坦的表面)的背景下,可以有效地使用高流量移动机器人在各种环境中执行任务。其次,与在自主系统中的应用扩展相关,例如在运输,医学和研究领域,小型移动机器人的出现成为这一开发的组成部分。能够穿透难以到达的地方并在有限空间的条件下移动的能力使他们能够执行难以使用传统方法解决的任务。第三,在提高对各个领域任务性能效率和速度的要求,包括生产和维护,高流量移动机器人布局的开发可以极大地促进常规操作并确保更有效地利用资源。总而言之,开发了小型移动机器人布局的新概念,旨在增加交通,满足现代社会的要求,并为改善各个行业的自主系统提供了广泛的机会[1-4]。
摘要 运动相关的脑损伤是一个紧迫的问题,特别是在冰球等高强度运动中,撞击速度在确定头部撞击程度和随后的受伤风险方面起着重要作用。然而,现有的测量撞击速度的方法,如 GPS 跟踪和手动视频分析,成本高昂,难以使用,尤其是对于青少年联赛而言。本研究介绍了一种使用计算机视觉从 2D 视频中确定球员速度的自动化、经济高效的方法。第一步是定位场地,通过一种新方法使用 YOLOv5 检测冰面上的特定地标。凭借超过 9,900 张带注释图像的数据集,YOLOv5 表现出色,在 80% 的置信水平下实现了 0.99 的 F1 分数和精确召回率,在 IoU 阈值为 0.5 和 0.5:0.95 时分别实现了 98.5% 和 64.5% 的 mAP 分数。通过每帧检测至少四个地标,计算单应性矩阵以获得自上而下的视图,从而完成定位过程。这种方法实现了 0.96 的平均 IoU,验证了其在现场定位中的准确性,并展示了其在提高冰球撞击速度测量的可及性和成本效益方面的潜力。
摘要 — 本文建议使用多角度高光谱长波红外遥感技术结合区域三维重建,以提高探测可靠性,减少在山区和丘陵地区搜寻地下物体(杀伤人员地雷、简易爆炸装置和未爆炸弹药)时的误报频率,因为这些地区难以使用扫雷器。多角度遥感技术可以排除被遮蔽并以一定角度放置的物体的跳跃,并将含有异常物体的土壤与普通土壤和表面不规则物分开。给出了用于雷区测绘的光学数字综合体的概念,其主要基础是高光谱设备,该设备从两个光学通道接收数据,并将它们分成长波红外范围内的数十个光谱通道。一个光学通道扫描天底,第二个通道以一定角度扫描土壤表面。该综合体还包括一个可见光范围的相机,用于接收不同空间平面中的一系列图像以进行进一步的三维重建。描述了一种获取分段高光谱数据并将其与重建的数字地形模型相结合的方法,用于解决隐藏地面和地下物体的探测、侦察以及在不同坡度地形上规划人道主义排雷任务的问题。