历史上,传染病给人类带来了沉重的打击。历史一再警告我们,一种致命的病原体就能杀死数百万人。14 世纪席卷欧亚大陆的黑死病大流行夺走了多达 1 亿人的生命( Cohn,2008 ),1918 年的西班牙流感在不到 2 年的时间内夺走了 5000 多万人的生命( Taubenberger and Morens,2019 )。这种情况在 20 世纪开始发生变化,抗生素和疫苗这两项了不起的成就拯救了数亿人的生命,使他们免于致命感染。如果我们没有针对天花、黄热病、脊髓灰质炎和其他致命病原体的疫苗,难以想象会有多少人丧生。如果我们没有抗生素,外科病房会发生什么情况则令人难以想象。一个令人愉快的巧合是,导致这些巨大成功的工具和技术往往是由微生物本身提供的:抗生素是由细菌和真菌产生的,疫苗通常是减毒或灭活的微生物。同样令人着迷的是,包括病毒和细菌在内的微生物教会了我们分子语言,让我们理解生命最基本的过程,并启发我们开发强大的生物技术来预防和治疗各种危及生命的感染。现代健康科学的一个支柱是 DNA 生物学和重组 DNA 技术。正是细菌和病毒教会了我们 DNA 是遗传物质,以及 DNA 基因表达是如何执行和调控的。更值得庆幸的是,我们还从这些微生物那里获得了解码 DNA 序列和设计 DNA 克隆的分子工具。如今,下一代测序和元数据分析彻底改变了我们在诊断、预防和治疗层面管理传染病的方式。尽管取得了这些突破性的成就,但传染病仍然给公共卫生带来沉重的负担,每年造成 1000 万至 1500 万人死亡。为证明这一严重的全球影响,世界卫生组织 (WHO) 于 2019 年公布的全球十大健康威胁中有六项与传染病有关 (https://www.who.int/emergencies/ten-threats-to-global-health-in-2019)。这六大威胁包括全球流感大流行、抗生素耐药性、埃博拉和其他高威胁病原体、疫苗犹豫、登革热和艾滋病毒 (HIV)。这些传染性病原体和相关问题位列全球卫生挑战之首并非偶然。人类历史上经常发生流感疫情。我们根本无法从人类中根除流感病毒,部分原因是它们会从鸟类和其他动物的天然宿主偶尔传播给人类 (Olsen 等人,2006 年)。生产有效的季节性流感疫苗已经是一个挑战,这将是一项更加艰巨的任务,预测和准备应对不可预测但即将来临的流感大流行,这在目前并非不可能。几十年来,我们一直受益于抗生素的使用。然而,过度使用抗生素和其他不良医疗习惯加速了耐药细菌的出现。如果没有可持续的新抗生素渠道,也没有其他有效的细菌感染治疗方法,我们可能会死于多重耐药致病菌(也称为超级细菌)引起的感染。据美国疾病控制和预防中心报道,仅在美国,每年就有 35,000 人死于抗生素耐药性细菌感染。
协会使用公共和私人资金,自 2010 年以来已建造了 20,000 栋房屋。这种情况凸显了增加对经济适用房和支持服务的投资的迫切需求,这些服务旨在帮助那些无家可归的人。当 Kenzie 和 John 继续寻找永久的家时,他们仍然希望有一天他们会找到一个属于自己的地方。在那之前,他们将继续依靠医院急诊科作为暂时的避难所,以躲避贝尔法斯特无家可归的严酷现实。如果以一个社会如何对待其最脆弱的社会成员来评判它,那么贝尔法斯特应该为自己感到羞愧。我们有许多像西蒙社区这样的伟大慈善机构,甚至还有来自教堂的团体,他们把时间花在城市无家可归的人身上——但是,除非无家可归问题被当作一个紧迫的危机来处理,除非我们有安全网来保护那些摆脱照顾的孩子,否则慈善机构和慈善人士的努力只是沧海一粟。贝尔法斯特的青少年无家可归现象日益严重,过去五年间,有 400 名儿童因无家可归而自生自灭。这还不够。现在是时候让我们从日常工作中抽出十分钟,为那些既没有电脑,甚至可能没有意愿抗争的人们发声了。请联系您当地的议员,游说斯托蒙特 - 采取行动,因为这种情况可能发生在任何人身上,而且北爱尔兰接受寄养的儿童数量在过去十年间增加了 40% - 自 1992 年以来更是增加了惊人的 72%,这些年轻人在从寄养系统幸存下来后还要过着艰苦的生活,这简直令人难以想象。
如果没有各种薄膜涂层应用方法,现代技术将难以想象。在各种切削工具(钻头、刀具、铣床等)上沉积硬化涂层可以减少磨损并延长其使用寿命。在不同光学部件表面沉积薄膜,可以获得具有所需参数的产品。对于微电子技术来说,涂层厚度从几纳米到几十微米不等。磁控溅射目前被广泛用于涂覆各种材料的薄膜。在此过程中,靶材阴极在真空室中被工作气体的离子溅射,从而在零件上沉积薄膜涂层 [1 – 5] 。磁控溅射系统 (MSS) 的主要缺点是所生产涂层中原子的能量成本很高 [6,7]。但是,如果阴极处于液相,则可以将涂层涂覆率提高 10 倍,并将能源成本降低 1/4,同时保持涂层质量。涂层形成率与典型的真空电弧蒸发 [ 1 ] 相当。阴极材料利用率低(不高于 40%)是采用固相阴极的 MSS 的另一个缺点。采用液体阴极的 MSS 可以将材料利用率提高到几乎 100%,从而大大降低经济成本并实现无浪费生产。本研究的目的是根据从液相溅射的锡阴极的实验数据来选择加工模式并评估阴极溅射系数和放电参数。阴极溅射是使用经过改装的永磁磁控溅射系统进行的,以便
I.简介美国 - 中国经济和安全审查委员会的成员,今天邀请这里邀请我分享我对美国 - 中国科技竞赛的未来十年的看法。我叫大卫·林。我是特殊竞争研究项目(SCSP)未来技术平台的高级总监,这是一家无党派的非营利组织,提出建议,以增强美国的竞争力,因为新兴技术正在重塑我们的经济,国家安全和社会。在SCSP中,未来的技术平台团队负责扫描地平线,以了解新兴的地缘政治和技术趋势,并为美国提出的政策建议,以维持与我们的竞争对手有关的位置优势。今天,我的证词从我们在SCSP上所做的工作中获取,并将评估中国今天领导哪些技术领域,该领域中国打算在明天领导,并就美国应如何将自己定位到未来十年中提出一些建议。我必须亲眼目睹中国制造的早期2025年,当时我在美国上海的经济官员被派往那里。我在2025年最初推出的中国几个月后降落在中国,并召回参加了几次当地行业会议,并看到了围绕工业计划的兴奋。当地党的领导人和行业高管将2025年中国制造的工业重新唤醒。但是快进了十年,在这里,我们正在制作领先的智能手机并成为认真的全球竞争对手。当时的一个普遍避免是中国的愿望是向上推动价值链,以最终将苹果iPhone标语从“在中国制造的加利福尼亚设计”更改为“在中国制造的中国设计”。我记得当时,中国将能够制造一项可以与Apple iPhone的口径相匹配的技术对许多人来说是多么难以想象。这仅仅是故事的开始。
2021 年 9 月 15 日 Elham Tabassi 和 Mark Przybocki 美国国家标准与技术研究所 MS 20899,100 Bureau Drive,Gaithersburg,MD 20899 主题:NIST AI 风险管理框架 通过电子邮件发送至 AIframework@nist.gov 亲爱的 Tabassi 女士和 Przybocki 先生, 感谢您邀请我们提交意见,以回应美国国家标准与技术研究所 (NIST) 关于 NIST AI 风险管理框架 (AI RMF 或框架) 的信息请求 (RFI)。NIST 要求将意见发送至 AIframework@nist.gov 或 www.regulations.gov。我们提供以下意见供您考虑。我们关注三大类风险:民主和安全、人权和福祉以及全球灾难。尽管现实世界中许多风险可能属于多个类别,但每个类别也具有重要的分析区别,并且对于确保人工智能系统的未来发展保持安全并与人类优先事项相称具有独立的重要性。虽然先前的研究主张认真和紧急地对待每种类型的风险,但我们强调,这些风险——无论今天多么不可能或难以想象——都可能相互影响和加剧,除非我们妥善处理和减轻它们。换句话说,除非对每个风险都给予应有的重视,否则我们无法详尽地为任何这些风险做好准备。这需要积极监测和主动机制来防止它们的表现和相互影响。因此,我们向 NIST 提交此报告旨在填补的空白是确定针对这些风险交集的政策策略、体制机制和技术干预措施,重点关注与人工智能理论家、计算机科学家、政策制定者和利益相关者倡导者所阐述的特定危险或警告相关的主题。我们的主要一般主题和建议包括:● 继续关注并描述社会规模问题的含义,包括:民主和安全风险;人权和福祉风险;以及全球灾难性风险。○ 我们赞赏 NIST 在 AI RMF RFI 中除了个人和团体风险外,还大量关注社会规模问题。○ 我们建议将社会规模问题的含义扩展到
20 世纪 60 年代末,电子发动机控制装置开始出现在汽车领域。我记得最早的一种是博世开发的全模拟燃油喷射计算机 (D-Jetronic™),它用于 4 型大众汽车。当时,我在普惠研究实验室工作,致力于涡轮发动机电子控制系统的开发。博世的 Jetronic 系统为该项目的部分研发奠定了基础。从那时起,数字技术取得了巨大的进步,而以前的数字计算机需要占用很大的空间,需要巨大的室外冷却塔,并且是会计师的专属领域。当今设备中令人惊叹的技术(功耗和尺寸大幅降低;速度、计算能力、可靠性和环境耐受性大幅提升)已经使全权限数字发动机控制器 (FADEC) 成为商用和军用航空中的常见设备。在政府减少发动机排放的要求的推动下,控制技术传播到了汽车领域,以至于大多数应用(汽车、卡车、机车、拖船等)中的当代活塞发动机至少有一台专用数字计算机(又称 ECU 或发动机控制单元)完全控制燃料输送和点火事件,从而产生机械燃料和点火系统无法想象的效率、排放、灵活性和平稳性。事实上,当代压燃(“柴油”)发动机现在的排放量低得令人难以想象,同时产生赢得比赛的动力和比火花点火发动机更高的效率。勒芒获胜的奥迪和标致柴油发动机(每升 140 bhp,转速为 5000 rpm)的性能是由数字控制的燃油喷射系统实现的,该系统在 30,000 psi 附近(即三万)运行,并且每个燃烧循环可以有多达五次单独的喷射事件。因此,毫无疑问,活塞发动机的计算机控制是一项值得期待的进步,对民航业来说可能非常有吸引力。民航业认证的几家主要公司已经生产了不同级别的数字控制装置。
2009 年 5 月的最后一天,夜幕笼罩着里约热内卢机场,216 名等待登上飞往巴黎航班的乘客绝对不会想到,他们再也见不到阳光了,很多人还要被绑在座位上两年,然后才被发现死在黑暗中,大西洋海面以下 13,000 英尺处。但事实就是如此。法航 447 航班载有 9 名乘务员和 3 名飞行员,由于执勤时间限制,机组人员人数有所增加,此次航程为 5,700 英里,预计飞行时间将近 11 小时。这些飞行员都是训练有素的飞行员,驾驶着一架完美的宽体空客 A330 客机,为全球顶级航空公司之一服务,这家标志性公司是全法国引以为傲的。即使到了今天,从海底打捞出的飞行记录器、手头的法国技术报告以及法国法院正在进行的详尽调查,人们仍然难以想象飞机坠毁了。 447 航班坠毁的原因是一个小故障,即短暂的空速指示丢失——这是平稳直线飞行过程中出现的信息故障的最小信号。这似乎很荒谬,但飞行员们确实不知所措。对于原因,一个简单的答案——他们恰好是三个异常无能的人——已被广泛驳斥。其他答案更具推测性,因为飞行员无法再解释自己,在他们死前已经陷入了一种疯狂的语无伦次状态。但他们的语无伦次告诉我们很多。这似乎根源于过去 40 年来提高航空安全性的驾驶技术和飞机设计的进步。简而言之,自动化使普通航空公司飞行员越来越不可能在飞行中面临严峻的危机——但他们也越来越不可能在危机发生时应对这种危机。此外,目前尚不清楚是否有办法解决这一悖论。这就是为什么,对许多观察家来说,法航 447 号航班的坠毁是现代史上最令人费解和最重大的航空事故。机组人员在事故发生前三天抵达里约,并住在科帕卡巴纳海滩的索菲特酒店。法航认为,在那里停留是特别理想的。副驾驶是 32 岁的皮埃尔-塞德里克·博南,他带着妻子一起出行,把两个年幼的儿子留在家里,机长是 58 岁的马克·杜波依斯,与一名下班的空乘和歌剧演员同行。事故报告以法国人的作风,没有提到杜波依斯的私生活,但这一遗漏随后导致调查结果显示疲劳与事故无关,而机长的疏忽显然起了作用。杜波依斯一路走来很艰难,他驾驶过多种飞机,后来受雇于法国航空公司后来被收购的国内航空公司国际航空公司;他是一名经验丰富的飞行员,拥有近 11,000 小时的飞行经验,其中一半以上是作为机长飞行的。但据了解,他前一天晚上只睡了一个小时。他没有休息,而是花了一整天时间与同伴一起游览里约。447 航班于晚上 7:29 按计划起飞,机上载有 228 名乘客。空客 A330 是一种温顺的双引擎飞机,配有自动化驾驶舱和基于计算机的电传操纵控制系统,可提供异常稳定的飞行,并且在极端情况下会进行干预,以防止飞行员超出空气动力学和结构极限。在 15事故报告没有提及杜波依斯的私生活,但这一遗漏随后导致一项调查结果显示疲劳与事故无关,而机长的疏忽显然起了作用。杜波依斯一路走来很艰难,在加入法国航空公司(后来被法国航空收购的国内航空公司)之前,他驾驶过多种飞机;他是一名经验丰富的飞行员,飞行时间接近 11,000 小时,其中一半以上是作为机长飞行的。但据了解,他前一天晚上只睡了一个小时。他没有休息,而是和同伴一起游览了里约。447 航班于晚上 7:29 按计划起飞,机上载有 228 名乘客。空中客车 A330 是一种温顺的双引擎飞机,配有自动驾驶舱和基于计算机的电传操纵系统,可提供异常稳定的飞行,并且在极端情况下会进行干预,以防止飞行员超出空气动力学和结构极限。在 15事故报告没有提及杜波依斯的私生活,但这一遗漏随后导致一项调查结果显示疲劳与事故无关,而机长的疏忽显然起了作用。杜波依斯一路走来很艰难,在加入法国航空公司(后来被法国航空收购的国内航空公司)之前,他驾驶过多种飞机;他是一名经验丰富的飞行员,飞行时间接近 11,000 小时,其中一半以上是作为机长飞行的。但据了解,他前一天晚上只睡了一个小时。他没有休息,而是和同伴一起游览了里约。447 航班于晚上 7:29 按计划起飞,机上载有 228 名乘客。空中客车 A330 是一种温顺的双引擎飞机,配有自动驾驶舱和基于计算机的电传操纵系统,可提供异常稳定的飞行,并且在极端情况下会进行干预,以防止飞行员超出空气动力学和结构极限。在 15