FRINGE 系列是跨学科分析和发展“无边界区域研究”的平台。FRINGE 是“流动性”、“抵抗力”、“不可见性”、“中立性”、“灰色地带”和“难以捉摸”的首字母缩写,这些类别是 FRINGE 中心支持的主题的基本类别。FRINGE 中心概念中的矛盾表达了我们对以下方面的兴趣:(1)“区域研究”与更传统的学科之间的紧张关系;(2)从“中心到边缘”和从“边缘到中心”的社会、政治和文化轨迹。该系列追求对灰色地带和社会和文化复杂模式的重要性的创新理解。我们的目标是开发那些难以表达、可视化或测量的复杂元素的分析形式。
黎巴嫩目前的经济危机是最近历史上最糟糕的。GDP实际上崩溃了38%。黎巴嫩里拉(Lebanese Lira)于1997年固定在美元上,在平行市场上损失了其价值的98%以上。政府已拖欠债务,存款人无法获得其在商业银行持有的资金。合并的公共部门债务,包括政府债务和商业银行对Banque Du Liban(BDL)的主张,代表了当前GDP的七倍以上。公共服务交付崩溃了。简而言之,该国正在遭受债务危机,银行危机,货币危机和增长崩溃。危机四年来,一项决议仍然难以捉摸,每天都会增加人口所面临的经济和社会负担。
摘要:使用光子带镜的陷阱和引导光的光子晶体纤维(PCF)通过许多学科的巨大科学创新和技术应用彻底改变了现代光学器件。最近,受到物质拓扑阶段的启发,理论上已经提出了Dirac-Wortex拓扑pcfs,它具有有趣的拓扑特性和光纤通信中前所未有的机会。然而,由于制造和表征的重大挑战,迄今为止,dirac-vortex拓扑PCF的实验证明仍然难以捉摸。在这里,我们报告了使用标准的堆栈和抽签制造工艺对二氧化硅玻璃毛细管的实验实现。此外,我们通过实验观察到dirac-wortex的单极化单模式与
磁化和光之间的关系一直是过去一个世纪的密集研究的主题。在此,磁化对光极化的影响已得到充分了解。相反,正在研究用极化光的磁性操纵,以实现杂志的全光控制,这是由潜在的Spintronics中潜在的技术实施驱动的。据报道,诸如薄膜和亚微米结构中杂志的单脉冲全光切换之类的发现。 然而,纳米尺度上磁性的局部光学控制的证明仍然难以捉摸。 在这里,证明具有圆形极化飞秒激光脉冲的令人兴奋的金纳米盘可导致超快,局部和确定性控制磁化磁化强度的磁化。 通过利用逆法拉第效应在等离子纳米散发中产生的磁矩来实现此控制。 结果为在纳米级旋转设备中进行轻驱动的控制铺平了道路,并为等离激元纳米结构中磁场的产生提供了重要的见解。诸如薄膜和亚微米结构中杂志的单脉冲全光切换之类的发现。然而,纳米尺度上磁性的局部光学控制的证明仍然难以捉摸。在这里,证明具有圆形极化飞秒激光脉冲的令人兴奋的金纳米盘可导致超快,局部和确定性控制磁化磁化强度的磁化。通过利用逆法拉第效应在等离子纳米散发中产生的磁矩来实现此控制。结果为在纳米级旋转设备中进行轻驱动的控制铺平了道路,并为等离激元纳米结构中磁场的产生提供了重要的见解。
癫痫的特征是反复发作,是一种负担很重的疾病,在神经系统疾病中伤残调整生命年排名第五 [ 1 ]。癫痫发生是一个渐进的过程,最初未受损的“健康”大脑变得容易发生癫痫。尽管多年来对癫痫进行了广泛的研究,旨在破译关键的分子机制并确定新药开发的目标,但发现一种抑制癫痫发生的药物仍然难以捉摸。本综述从教育角度阐明了癫痫发生的基本概念,提供了对所涉及的关键结构和分子生物学变化的详细时空理解。此外,它还讨论了诊断和治疗生物标志物,以进一步加强对该领域的理解。
主流艺术史最近令人兴奋的发展之一是与认知科学和神经学的对抗。本研究基于以下观察:尽管神经科学和艺术史具有相互促进的潜力,但这些学科的对抗仍存在一些问题。我们研究了这种对抗产生的几个关键问题,特别是在最近发展的神经美学领域的背景下。最值得注意的是,我们指出了学科之间的语言障碍,并认为这是双方缺乏理解的根本原因。艺术和美学的共同概念难以捉摸,在这些学科中具有不同的内涵。我们提出技术科学艺术作为发展联合术语的基础,可以形成熟悉双方关注点的观众,新一代具有科学知识的艺术家有机会将这些学科连接起来,实现互利共赢。
驱动蛋白是一种沿微管行走的加工性运动蛋白,已被用作集体运动的模型蛋白。在之前的研究中,已经检查了运动蛋白数量的影响;然而,密度和布局的影响仍然难以捉摸。11 – 16 这是因为 (1) 样本的异质性和 (2) 难以分别控制数量和密度/布局。这些缺点可以归因于传统的测定方法(例如珠子和滑动测定),其中马达通常随机吸附到转运体上,并且马达数量和分子间距离的分布很广。为了克服这些限制,已经开发出基于 DNA 的测定方法,使研究人员能够设计和构建具有确定数量和布局的运动分子的转运体。17 – 19
t ype 2糖尿病(T2DM)是一种全球流行病,它使数百万人成为全球医疗保健系统的重大负担。[1-3]解决这种疾病由于其多因素性质而被证明具有挑战性;它的发展与遗传,生活方式和环境因素之间的复杂相互作用有关,并因合并症而更加复杂。[4-6]尽管在糖尿病研究和医学创新方面取得了进步,但对T2DM的确定治疗仍然难以捉摸,需要对新型治疗途径进行持续的探索。[2,7]在这一持续的挑战中,有前途的前沿以钠 - 葡萄糖共转运蛋白2(SGLT2)抑制剂的形式出现,这代表了T2DM管理的范式转移。sglt2抑制剂调节肾胶结吸收,并在
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。